Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2014

Supporting Information

"Turn-On" fluorescent chemosensor for Zinc (II) dipodal ratiometric receptor: Application in live cell imaging.

Kundan Tayade^{a,b}, Banashree Bondhopadhyay^d Hemant Sharma^c, Anupam Basu^d, Vikas Gite^a, Sanjay Attarde^b, Narinder Singh^{*c}, Anil Kuwar^{*a}

^aSchool of Chemical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) India.

^bSchool of Environmental and Earth Sciences, North Maharashtra University, Jalgaon 425 001 (MS) India.

^cDepartment of Chemistry, Indian Institute of Technology, Ropar, Rupanagar (Punjab) India.

^dMolecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.

* Corresponding authors. Tel.: +91-257-2257432; fax: +91-257-2257403

E-mail addresses: <u>kuwaras@gmail.com</u> <u>nsingh@iitrpr.ac.in</u>

Figure S1. IR spectra of receptor 2

Figure S3. ¹³C-NMR spectra of receptor 2

Figure S4. LC-MS spectra of receptor 2 (M+H⁺)

Figure S5a. TGA of receptor **2** (heating rate 10 °C per minute under nitrogen environment).

Figure S5b. TGA of receptor $2.Zn^{2+}$ (heating rate 10 °C per minute under nitrogen environment).

Figure S6a. DSC of receptor 2.

Figure S6b. DSC of receptor 2.Zn²⁺.

Figure S7a. Fluorescence titration spectra of receptor **2** (0.1 mM) in the presence of different concentrations of Zn^{2+} (1 mM) ($\lambda ex = 278$ nm, $\lambda em = 341$ nm, excitation and emission slit 5 nm) up to 10 µl (0.05 equiv.).

Figure S7b. Fluorescence titration spectra of receptor **2** (0.1 mM) in the presence of different concentrations of Zn^{2+} (1 mM) ($\lambda ex = 278$ nm, $\lambda em = 341$ nm, excitation and emission slit 5 nm) up to 400 μ L (2 equiv.).

from 2:1 to 1:1.

Figure S8. Fluorescence spectrometric response ($\Delta F = F - F_0$) of receptor 2 (0.1 mM) upon addition of 100 μ L of respective cation salts (1 mM) in CH₃CN/H₂O.

Figure S9. A fluorescence sensing of Zn^{2+} ion (1 mM, 1equiv) by receptor **2** (0.1 mM) in the presence of other competing cations (1mM, 2 equiv.).

Figure S10a. Job's plot representing the stoichiometry of complex **2**.Zn²⁺ (host : guest; 1:1).

Figure S10b. Normalized plot obtained from fluorescence spectroscopy ($\lambda em = 341$ nm).

Figure S10c. Fluorescence intensity at 341nm of receptor **2** (0.1 mM) versus increasing concentration of $\text{Log}[\text{Zn}^{2+}]$. The fluorescence response fits to a Hill coefficient of 1.1446, which is in concordance with the 1:1 binding stoichiometry for the receptor **2**.Zn²⁺ complex.

<u>Spectrum Plot - 8/8/2013 10:54 AM</u> 1 A Scan 37 from c:\iit\2013-2014\lems-45\S-4-Zn-371-msms.xms

Figure S11. LC-MS spectra of 2.Zn²⁺ complex (M+H⁺)

Figure S12a. A Benesi-Hildebrand methodology for receptor **2**, $(1/\Delta F)$ vs 1/[G], $K_a = 1.29 \times 10^6$ M⁻¹.

Figure S12b. A Scatchard methodology for receptor **2**, $\Delta F/[G]$ vs ΔF , $K_a = 1.00 \times 10^6$ M⁻¹.

Figure S12c. Connor's fitting method for receptor **2**, $(1-F/F_0)/[G]$ vs F/F_0 , $K_a = 1.94 \times 10^6 \,\mathrm{M}^{-1}$

Figure S13. ¹H-NMR spectra (A) only receptor 2 (B) complex 3.

Figure S14: Change in fluorescence intensity of receptor **2** at 341 nm upon varying the pH of the solution.

Figure S15: Change in fluorescence intensity of receptor **2** at 341 nm at various temperature.

Figure S16: Fluorescence intensity of receptor **2** at 341 nm upon addition of Zn^{2+} ion (1 mM) over time.

References	Detection Limit	Solvent
Zhou et. al., (2012)	2.2×10 ⁻⁷ M	CH ₃ CN-H ₂ O
Dong et. al., (2014)	1×10-7 M	CH ₃ CN-Tris-HCl
Li et. al., (2014)	4.9×10 ⁻⁸ M	CH ₃ CN-H ₂ O
Kaur et. al., (2014)	1×10 ⁻⁶ M	DMF-H ₂ O
Sivaraman et. al., (2012)	1.5×10 ⁻⁷ M	Phosphate buffer
Present work	6.5×10 ⁻⁷ M	CH ₃ CN-H ₂ O

 Table S1: Comparison of literature reports with present work.

Parameter	Receptor 2	3
Dihedral angles (°)		
N25-C29-C30-N26	61.09	55.65
C29-C30-N26-C24	-135.57	-158.35
C5-C4-C23-N25	33.34	115.51
O21-C3-C4-C23	-0.50	6.07
C27-C23-N25-C29	-66.67	-63.07
C3-C4-C23-N25	-147.43	-68.10
O22-C12-C11-C24	-2.34	6.08
C11-C24-N26-C30	157.50	169.33
Bond angles (°)		
C23-N25-C29	116.22	113.26
C5-C4-C23	121.38	123.03
C30-N26-C24	120.29	113.26
N26-C24-C28	113.49	110.98
N25-C29-C30	109.24	111.36
Bond Length (Å)		
N25-C29	1.46	1.52
C30-N26	1.46	1.52
C24-N26	1.47	1.54
C23-N25	1.47	1.54
C12-O22	1.39	1.46
C3-O21	1.40	1.46
O22-H45	0.97	0.97
O21-H44	0.97	0.97
N25-H42	1.01	1.02
N26-H43	1.01	1.02
C23-C27	1.54	1.53
Energy (a.u.)	-960.28	-1025.33

 Table S2: An optimized bond angles, dihedral angles, bond length and energy

 calculated at B3LYP/ LANL2DZ level.