Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2014

Electronic Supplementary Information (ESI)

Photostabilization of Endogenous Porphyrins: Excited State Quenching by Fused Ring Cyanoacrylates.

Steffen Jockusch,** Craig Bonda* and Shengkui Hu*

^a Department of Chemistry, Columbia University, New York, NY 10027, USA. ^bThe HallStar Company, Chicago, IL 60606, USA.

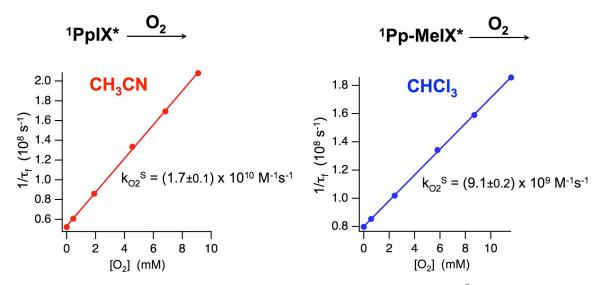
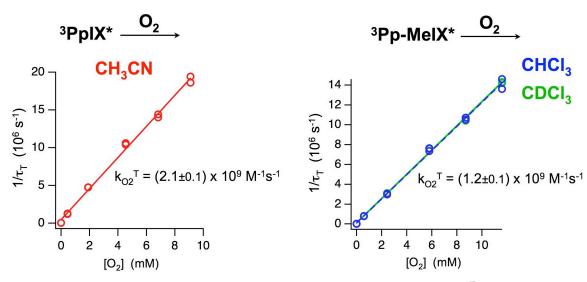



Fig. S1 Determination of the bimolecular quenching rate constant k_q^S of quenching of PpIX and Pp-MeIX fluorescence by molecular oxygen from the slope of the plot of the inverse fluorescence lifetime vs. the dissolved oxygen concentration. $\lambda_{ex} = 496$ nm; $\lambda_{em} = 630$ nm.

Fig. S2 Determination of the bimolecular quenching rate constants k_q^T of quenching of PpIX and Pp-MeIX triplet states by molecular oxygen from the slope of the plot of the inverse triplet lifetime (monitored at 440 nm) vs. the dissolved oxygen concentration. $\lambda_{ex} = 532$ nm.

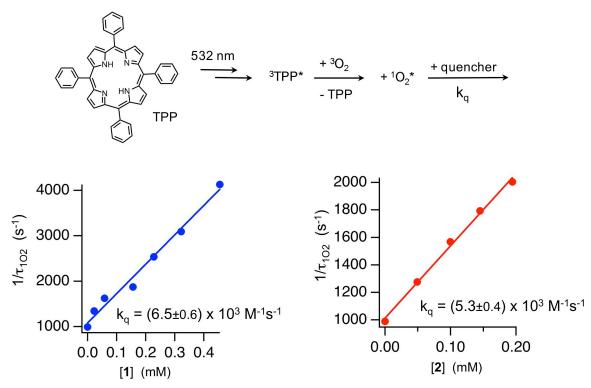


Fig. S3 Determination of the bimolecular quenching rate constants k_q of quenching of singlet oxygen (1O_2) by 1 and 2 from the slope of the plot of the inverse singlet oxygen lifetime (monitored by phosphorescence at 1270 nm) vs. the concentration of 1 and 2. Tetraphenylporphyrin (TPP) was used as 1O_2 sensitizer with $\lambda_{ex} = 532$ nm.