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The spherical symmetrical diffusion model - numerical calculation 

 

The numerical calculation is based on Fick’s first law of 

diffusion [1]: 
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𝑑𝑡
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𝑑𝑐

𝑑𝑥
)
𝑝,𝑇

   (1) 

dn/dt represents the flux, which is proportional to the 

diffusion constant D, the cross section of the transit area A 

and the concentration gradient dc/dx.  

To make a numerical simulation according to our model (Fig. 

1 in the paper), we first need to choose the thickness of the 

layers and a corresponding time step. While too few layers 

can’t sufficiently reflect the heterogeneity of the area, a layer 

thickness too small dramatically increases the calculation 

effort. We chose a description of the liposomal bilayer with 4 

model layers of each 1 nm thickness, since we estimate the 

liposomal bilayer thickness to be 4nm according to [2] and we 

handle the bilayer as almost homogeneous.  

To estimate a corresponding time step, its influence on the 

spatial distribution of oxygen relative to the chosen layers has 

to be taken into account. In Fig. 1 the spatial distribution of 

oxygen in water is shown for different time steps after 1D 

diffusion starting with a delta distribution. It can be described 

using the well-known Gaussian distribution  
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  with   𝜎 = √2𝐷𝑡 (2) 

(2) solves the 1D diffusion equation (2
nd

 Fick’s law) for this 

starting condition. For illustration how many layers would be 

affected, distances that correspond to layers are indicated 

presuming the distribution to be centred in one layer. 

As visible quite easily, shorter times would be more correct 

but would require longer calculation times, while for longer 

times more than just the directly neighbouring layer is 

affected. It is aspired to limit the interaction to neighbouring 

layers as this makes the simulation much easier. We chose a 

time step of 0.125 ns for our calculations. Though Fig. 1 gives 

the impression of 0.05 ns being a better choice for a time 

step, comparing the results of the simulation for different 

time steps no significant difference for all time steps up to 

0.125 ns was discernible For the sake of reducing calculation 

time we therefor chose aforementioned time step. Also, keep 

in mind that Fig. A starts with a delta distribution, which 

causes a high concentration gradient.  

  

Fig. A: Spatial distribution of oxygen in water after 1D diffusion for 

the time indicated in the legend. It is assumed that the oxygen is delta 

distributed in the centre of layer 1 at time 0.  

For a broader distribution with lower gradient as given in 

reality, the changes are much more moderate. 

As our model works with layers we have to discretize (1): 

∆𝑛
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= −𝐷 ∙ 𝐴 ∙ (
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)
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   (3)  

c is then the difference of concentration between two layers 

and x the distance between them, hence the thickness of 

the layers. Exactly spoken, this formula is valid for c = const 

only. However, if the time interval is selected short enough, 

this limitation is sufficiently respected. Consequently, time 

steps that are too long cause the simulation to become 

unstable. If we assume the changes in concentrations to be 

sufficiently small during each time step, the change of the 

concentration in layer j (c j) is: 

∆𝑐𝑗 =
∆𝑛

𝑉𝑗
     (4) 

n is left without index, even though it is different for each 

pair of layers, but we limit the description here to one 

neighbouring pair of layers (j and j+1).  

(3) and (4) gives: 

∆𝑐𝑗 = −
𝐷∙𝐴

𝑉𝑗∙∆𝑥
∆𝑐 ∙ ∆𝑡   (5) 
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In our model the volume Vj of the layers grows, dependent on 

their position in the model (see Fig. 1 in the paper), which we 

approximate as: 

𝑉𝑗 = ∆𝑥 ∙ 4𝜋(𝑗 ∙ ∆𝑥)2 = 𝑗2 ∙ 𝑉1  (6) 

This approximation is good only for j>15. However, since the 

contribution of the innermost layers to the overall signal is 

not very important (as these layers represent a very small 

fraction of the overall volume) and the inner volume of the 

liposome is overestimated only by 1.6% relative to the 

volume of the liposomal bilayer, the error originating from 

this approximation is negligible considering the error margin 

of the DLS size determination. 

For estimation of the transit cross section between layer j and 

j+1 we calculate the area of a sphere with a radius which is 

the geometric average of the radii of the involved layers, 

hence: 

𝐴𝑗,𝑗+1 = 4𝜋(∆𝑥)2 ∙ 𝑗 ∙ (𝑗 + 1)  (7)  

Then the amount of oxygen passing this interface is: 
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The changes in concentrations cj and cj+1 are then:  
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For each layer the change in concentration due to interaction 

with both neighbouring layers is calculated. Layer 1 and 1000 

interact only on one side. The diffusion constant for water 

and lipid layers is chosen accordingly. At phase borders 

(neighbouring layers with different internal conditions) 

diffusion is calculated based on the parameters of lipid.  

Singlet oxygen generation and decay are calculated for each 

time step. Generation of singlet oxygen (only in layer 37 and 

38 following the triplet decay) is considered before diffusion 

of the respective cycle and decay of singlet oxygen (in all 

layers according to its local decay time) is considered 

thereafter. 

Our experimental measurements are done with a time 

resolution of 20 ns. To enable simple fitting the calculated 

values of the simulation are recorded accordingly. Every 160 

cycles the overall amount of singlet oxygen in water layers 

(nW) and in lipid layers (nL) is calculated separately by 

summing up the product of concentration and volume for 

each layer using (6): 

𝑛𝑊(𝑡𝑖) = ∑ 𝑐𝑗(𝑡𝑖) ∙ 𝑗
2 ∙ 𝑉1
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1000
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ti represents the time corresponding to channel i in our 

TCMPC measurements. 

The final fitting procedure is done then by varying the 

parameter set (singlet oxygen decay outside the lipids and PS 

triplet decay time) and optimizing 
2

red by changing A, B and C 

for the fit function f(ti): 

𝑓(𝑡𝑖) = 𝐴 ∙ 𝑛𝐿(𝑡𝑖) + 𝐵 ∙ 𝑛𝑊(𝑡𝑖) + 𝐶   (11) 

The ratio of the amplitudes A/B represents the ratio of 

radiative rate constants and C factors in the dark counts of 

the setup, which are equally distributed over time. As 

outcome of this fitting procedure we get the best achievable 


2

red and the according rate ratio as a function of the 

parameter set. 

The minimum of this function indicates the most probable 

parameter set (Fig. 4 in the paper). 

Strictly spoken, the equations above are valid only for a flat 

free energy profile for translocation of 
1
O2, which means that 

the solubility of 
1
O2 is constant all over the sample. However, 

recent calculations of the free energy across a very similar 

bilayer (made from POPC) report anything but a flat profile 

[3]. The solubility of 
1
O2 inside the bilayer was found to be 

much higher than outside. This was also found experimentally 

for DMPC before [4]. 

If we simplify the free energy profile to a step function, flat 

inside and outside the membrane and just unsteady at the 

interface, the differences in solubility just affect diffusion 

between two pairs of layers, namely those that represent 

phase borders. 

In terms of diffusion, a layer with twice the solubility behaves 

like a normal layer with just half the concentration. 

So if 
1
O2 is S times better soluble in the membrane than in 

water, for calculating c at phase borders in (8) the 

concentration of 
1
O2 in the lipid layer has to be divided by S. 
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