Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2014

1

SUPPORTING INFORMATION

Green photocatalytic organic transformations by polyoxometalates *vs* mesoporous TiO₂ nanoparticles: Selective aerobic oxidation of alcohols

Theodoros S. Symeonidis,^{*a*} Ioannis Tamiolakis, ^{*b*} Gerasimos S. Armatas, ^{*b*} and Ioannis N. Lykakis,^{*a*,*}

^aDepartment of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece; Tel: +30-2310-997871; Fax: +30-2310-997679; E-mail:

lykakis@chem.auth.gr.

^bDepartment of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete, Greece.

Page	
2-3	DT-MTA catalyst characterization spectra
4-5	Reaction kinetic studies
6	Catalyst recycling tests
7	DT-MTA and TBADT catalyzed photooxidation of alcohols 3 , 6-8
8-11	Synthetic procedures and spectroscopic data of alcohols 1-8
12-16	Copies of ¹ H and ¹³ C NMR spectra
17-21	Copies of ¹ H NMR spectra of the crude mixture of the photooxidations
22-25	Copies of MS

Table of contents

Fig. S1 (a) Small-angle X-ray scattering pattern and (b) typical TEM image of mesoporous DT-MTA catalyst, showing three-dimensional porous ensembles of uniform TiO₂ nanoparticles (*ca.* 7–8 nm in size). The SAXS pattern display a strong scattering peak at $q \sim 0.44$ nm⁻¹ which corresponds to an average center-to-center interparticle distance (d= $2\pi/q$) of about 14.3 nm.

Fig. S2 Nitrogen adsorption-desorption isotherms at -196 °C and NLDFT pore size distribution calculated from the adsorption data (inset) for mesoporous DT-MTA material.

Fig. S3 The pseudo first-order rate plots (*x* is conversion of substrate at time t) for the photooxidation of various *para*-substituted benzyl alcohols catalyzed by mesoporous DT-MTA. *Experimental conditions*: 0.1 mmol alcohol, 45 mg catalyst, 20 mL min⁻¹O₂, 3 mL CH₃CN, 5 °C, UV-visible-light irradiation (λ >320 nm)

Fig. S4 The pseudo first-order rate plots (*x* is conversion of substrate at time t) for the photooxidation of various *para*-substituted benzyl alcohols catalyzed by decatungstate. *Experimental conditions*: 0.1 mmol alcohol, 3 mg catalyst, 20 mL min⁻¹O₂, 3 mL CH₃CN, 5 °C, UV-visiblelight irradiation (λ >320 nm).

Fig. S5. Recycling study of the mesoporous DT-MTA catalyst (*Experimental conditions: 0.1* mmol of 3, 45 mg of catalyst, 3 mL of CH₃CN, bubbling with O_2 , room temperature, t = 2h).

OH			0 	OH			
\mathbb{R}^{2} \mathbb{R}^{1}	CH ₃	hv/catalyst O ₂ /CH ₃ CN	R ² CH ₃	+ R R		+	`CH₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			a O CH ₃ R ¹ OOH c	+ F		b O d	`CH₃
Sub.	Catalyst	Time (min)	Conversion $\%^{[a]}$	Relative product yield % ^[b]			
				a	b	c	d
3	TBADT	40	50	>99	-	-	-
3	TBADT	90	82	>99	-	-	-
3	TBADT	120	97	>99	-	-	-
3	DT-MTA	90	35	>99	-	-	-
6	TBADT	10	45	88	4	2	6
6	TBADT	20	78	71	5	10	14
6	TBADT	120	100	25	1	2	72
6	DT-MTA	90	41	90	7	-	3
7	TBADT	10	10	>99	-	-	-
7	TBADT	20	55	85	-	13	2
7	DT-MTA	90	51	91	2	4	3
8	TBADT	20	60	83	7	5	5
8	TBADT	60	80	80	8	6	6
8	DT-MTA	90	35	92	-	-	2 ^[c]

Table S1. DT-MTA and TBADT catalyzed photooxidation of the *para*-alkyl substitute 1-phenylethanols **3**, **6-8**.

[a] Alcohol (0.1 mmol), decatungstate ($5x10^{-4}$ M), 2 mL CH₃CN, at 5 °C. [b] Determined by ¹H NMR spectroscopy and GC-MS after reduction of hydroperoxides to the corresponding alcohols with PPh₃, error $\pm 1\%$. [c] 6% of the corresponding 4-(1-hydroxyethyl) benzophenone was observed by NMR.

Synthetic procedures and spectroscopic data of alcohols 1-8

Alcohols 1-5 are commercial available and used without any further purification.

1-(4-ethylphenyl)ethanol (6). This compound was prepared by Grignard reaction using 0.62 g (5.0 mmoles) of 4-ethylbenzaldehyde, 0.17 g (7.0 mmoles) Mg and 7.0 mmoles of MeI in dry ether under Ar atmosphere at 0 °C. 0.71 g of the corresponding aryl alcohol **6** was isolated (94 % yield), after reaction completion monitored by TLC.

¹H NMR (500 MHz, CDCl₃): δ 7.33 (d, 2H, *J* = 8.2 Hz), 7.22 (d, 2H, *J* = 8.2 Hz), 4.89 (q, 1H, *J* = 6.5 Hz), 2.68 (q, 2H, *J* = 7.4 Hz), 1.93 (s, OH), 1.52 (d, 3H, *J* = 6.4 Hz), 1.27 (t, 3H, *J* = 7.4 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 143.5, 143.1, 127.9, 125.3, 70.2, 28.5, 25.0, 15.6. MS *m*/*z* = 150, 135 (100), 91, 79.

1-(4-isopropylphenyl)ethanol (7). This compound was prepared by Grignard reaction using 0.7 g (5.0 mmoles) of 4-isopropylbenzaldehyde, 0.17 g (7.0 mmoles) Mg and 7.0 mmoles of MeI in dry ether under Argon atmosphere at 0 °C. 0.75 g of the corresponding aryl alcohol **7** was isolated (91 % yield) after reaction completion monitored by TLC.

¹H-NMR (500 MHz, CDCl₃): δ 7.35 (d, 2H, J = 8.1 Hz), 7.25 (d, 2H, J = 8.0 Hz), 4.89 (q, 1H, J = 6.5 Hz), 2.95 (m, 1H), 2.05 (s, OH), 1.52 (d, 3H, J = 6.4 Hz), 1.29 (t, 3H, J = 6.9 Hz). ¹³C-NMR (125 MHz, CDCl₃): δ 148.1, 143.2, 126.5, 125.4, 70.2, 33.7, 24.9, 23.9. MS m/z= 164, 149 (100), 121, 105, 79.

1-(4-benzylphenyl)ethanol (8). This compound was prepared according to the procedure described below:

1-(4-benzylphenyl)ethanone (8a). To a solution of 5 mmoles of diphenyl methane in anhydrous dichloromethane, at 0 $^{\circ}$ C, were added 6 mmoles CH₃COCl and 6 mmoles of the AlCl₃ in portions. The reaction mixture was stirred for 6 h and then 30 ml of 10 % HCl at 0 $^{\circ}$ C was added and the organic layer was extracted with diethylether, washed with 5 % NaHCO₃ and

brine, dried and the solvent was removed under evaporation to give the corresponding aryl ketone **8a** in 90 % isolated yield.

To a mixture of LiAlH₄ (2 mmol) in dry ether 20 mL under Argon atmosphere at 0 $^{\circ}$ C was added dropwise a solution of the aryl ketone **8a** (6 mmol) in dry ether (10 mL). The mixture was heated under reflux for 1 h. The reaction was quenched at 0 $^{\circ}$ C by addition of 0.1 mL H₂O, 0.1 mL of 15 % NaOH, and 0.3 mL H₂O, followed by filtration. The mixture was washed with 5 % NaHCO₃ and brine, dried and the solvent was removed by evaporation to give the corresponding alcohol **8** in 92 % isolated yield.

¹H-NMR (500 MHz, CDCl₃): δ 7.28 (m, 5H), 7.19 (m, 4H), 4.89 (q, 1H, J = 6.4 Hz), 3.97 (s, 2H), 1.74 (s, OH), 1.48 (d, 3H, J = 6.4 Hz). ¹³C-NMR (125 MHz, CDCl₃): δ 143.5, 141.0, 140.3, 129.0, 128.8, 128.4, 126.1, 125.5, 70.2, 41.6, 25.0. MS m/z= 212, 194, 179, 165, 152, 115, 91 (100), 65.

1-(4-ethylphenyl)ethanone (6a)

¹H-NMR (500 MHz, CDCl₃): δ 7.91 (d, 2H, J = 8.8 Hz), 7.32 (d, 2H, J = 8.8 Hz), 2.74 (q, 2H, J = 7.6 Hz), 2.61 (s, 3H), 1.28 (t, 3H, J = 7.6 Hz). MS m/z = 148, 133 (100), 105, 77.

1-(4-acetylphenyl)-1-ethanone (6d)

¹H NMR (500 MHz, CDCl₃): δ 8.06 (s, 4H), 2.67 (s, 6H). MS *m*/*z*= 148, 133 (100), 119, 105, 91.

1-[4-(hydroperoxyethyl) phenyl]-1-ethanone (6c)

¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, 2H, *J* = 8.8 Hz), 7.88 (s, OOH), 7.32 (d, 2H, *J* = 8.8 Hz), 5.17 (q, 1H, *J* = 6.6 Hz), 2.63 (s, 3H), 1.50 (d, 3H, *J* = 6.6 Hz).

1-[4-(hydroperoxyethyl)phenyl]-1-ethanol (6b)

¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, 2H, *J* = 8.0 Hz), 7.39 (d, 2H, *J* = 8.0 Hz), 4.99 (q, 1H, *J* = 6.6 Hz), 4.95 (q, 1H, *J* = 6.6 Hz), 1.53 (d, 3H, *J* = 6.6 Hz), 1.50 (d, 3H, *J* = 6.6 Hz).

1-(4-isopropylphenyl)ethanone (7a)

¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, 2H, *J* = 8.1 Hz), 7.34 (d, 2H, *J* = 8.1 Hz), 2.99 (m, 1H), 2.61 (s, 3H), 1.30 (d, 3H, *J* = 6.9 Hz). MS *m*/*z*= 162, 147 (100), 132, 119, 91, 77.

1-[4-(hydroperoxy-1-methylethyl)phenyl]-1-ethanone (7c)

¹H NMR (500 MHz, CDCl₃): δ 8.06 (s, OOH), 7.96 (d, 2H, *J* = 8.4 Hz), 7.60 (d, 2H, *J* = 8.4 Hz), 2.62 (s, 3H), 1.63 (s, 6H).

4-benzyl acetophenone (8a)

¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, 2H, *J* = 8.1 Hz), 7.31 (m, 4H), 7.25 (t, 1H, *J* = 7.1 Hz), 7.20 (d, 2H, *J* = 7.4 Hz), 4.06 (s, 2H), 2.60 (s, 3H). MS *m*/*z*= 210, 195 (100), 165, 152, 115, 97.

1-(4-benzoylphenyl)-1-ethanol (8c)

¹H NMR (500 MHz, CDCl₃): δ 8.09 (d, 2H, *J* = 8.3 Hz), 7.89 (d, 2H, *J* = 8.3 Hz), 7.83 (d, 2H, *J* = 7.8 Hz), 7.65 (t, 1H, *J* = 7.3 Hz), 7.54 (t, 2H, *J* = 7.3 Hz), 2.70 (s, 3H). MS *m*/*z*= 226, 211, 183, 149, 105 (100), 77.

¹H and ¹³C NMR spectra

Figure S6. ¹H NMR and ¹³C NMR of the product **6** using CDCl₃ as solvent.

Figure S7. ¹H NMR and ¹³C NMR of the product **7** using CDCl₃ as solvent.

Figure S8. ¹H NMR and ¹³C NMR of the product **8** using CDCl₃ as solvent.

Figure S9. ¹H NMR of the products **6a** and **6d** using CDCl₃ as solvent.

Figure S10. ¹H NMR of the product **8a** using CDCl₃ as solvent.

Figure S11. ¹H NMR in CDCl₃ of the crude mixture after photooxidation of **6** catalyzed by $W_{10}O_{32}^{4}$.

Figure S12. ¹H NMR in CDCl₃ of the crude mixture after photooxidation of **6** catalyzed by DT-MTA.

Figure S13. ¹H NMR in CDCl₃ of the crude mixture after photooxidation of 7 catalyzed by $W_{10}O_{32}^{4}$.

Figure S14. ¹H NMR in CDCl₃of the crude mixture after photooxidation of **7** catalyzed by DT-MTA.

Figure S15. ¹H NMR in CDCl₃ of the crude mixture after photooxidation of **8** catalyzed by DT-MTA.

