Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2014

Electronic Supplementary Information (ESI)

Lophine derivatives as activators in peroxyoxalate chemiluminescence

Jessica Alves, Andreia Boaro, Jéssica Soares da Silva, Tiago Luiz Ferreira, Vinicius Blásio Keslarek, Cauai Antunes Cabral, Ronaldo Barros Orfão Júnior, Luiz Francisco Monteiro Leite Ciscato and Fernando Heering Bartoloni

Table of Contents

Tables section	S2
Table S1	S2
Table S2	S3
Table S3	S3
Table S4	S3
Figures section	S4
Figure S1	S4–S5
Figure S2	S6
Figure S3	S7
Figure S4	S8

Tables Section

Table S1. Maximum emission intensity (I_{max}), observed fall (k_1) and rise (k_2) rate constants, and chemiluminescence (Φ_{CL}) and singlet excited state formation (Φ_S) quantum yields for the peroxyoxalate reaction with lophine derivatives as activators. In EtOAc, at 25 °C, [TCPO] = 0.1 mmol L⁻¹, [IMI-H] = 1.0 mmol L⁻¹, [H₂O₂] = 10.0 mmol L⁻¹; kinetic data from Figure S2.

[1]	I _{max}	<i>k</i> ₁	k ₂	Φ_{CL}	Φs
(mmol L ⁻¹)	(E s ⁻¹) × 10 ¹²	(s ⁻¹) × 10 ³	(s ⁻¹) × 10 ¹	(E mol ⁻¹) × 10 ³	(E mol ⁻¹) × 10 ²
1.00	0.88 ± 0.02	3.79 ± 0.09	3.5 ± 0.3	0.757 ± 0.009	0.168 ± 0.002
0.75	0.77 ± 0.01	3.70 ± 0.02	3.4 ± 0.7	0.676 ± 0.005	0.150 ± 0.001
0.50	0.65 ± 0.01	3.75 ± 0.03	3.5 ± 0.6	0.561 ± 0.005	0.125 ± 0.001
0.25	0.44 ± 0.01	3.72 ± 0.07	3.2 ± 0.1	0.383 ± 0.003	0.085 ± 0.001
0.10	0.23 ± 0.01	3.74 ± 0.04	2.9 ± 0.3	0.201 ± 0.001	0.045 ± 0.001
[2]	I _{max}	<i>k</i> ₁	k ₂	Φ_{CL}	Φ_{S}
(mmol L ⁻¹)	(E s ⁻¹) × 10 ¹²	(s ⁻¹) × 10 ³	(s ⁻¹) × 10 ¹	(E mol ⁻¹) × 10^3	(E mol ⁻¹) × 10^2
1.00	0.92 ± 0.01	3.28 ± 0.03	4.1 ± 0.8	0.91 ± 0.01	0.234 ± 0.001
0.75	0.87 ± 0.02	3.22 ± 0.06	2.2 ± 0.6	0.88 ± 0.01	0.224 ± 0.001
0.50	0.86 ± 0.01	3.31 ± 0.02	3.5 ±0.6	0.84 ± 0.01	0.215 ± 0.001
0.25	0.67 ± 0.01	3.25 ± 0.03	1.9 ± 0.1	0.67 ± 0.01	0.171 ± 0.003
0.10	0.45 ± 0.01	3.27 ± 0.02	2.2 ± 0.3	0.44 ± 0.01	0.114 ± 0.001
[3]	Imax	k 1	k ₂	Φ_{CL}	Φ_{S}
(mmol L ⁻¹)	(E s ⁻¹) × 10 ¹²	(s ⁻¹) × 10 ³	(s ⁻¹) × 10 ¹	(E mol ⁻¹) × 10^3	$(E mol^{-1}) \times 10^2$
10.0	1.37 ± 0.02	3.84 ± 0.03	1.7 ± 0.1	1.13 ± 0.01	0.305 ± 0.004
7.5	1.32 ± 0.06	3.7 ± 0.1	1.9 ± 0.2	1.14 ± 0.03	0.309 ± 0.007
5.0	1.30 ± 0.03	3.69 ± 0.04	2.1 ± 0.3	1.13 ± 0.03	0.305 ± 0.007
2.5	1.24 ± 0.03	3.72 ± 0.06	2.1 ± 0.3	1.07 ± 0.01	0.290 ± 0.003
1.0	1.14 ± 0.01	3.81 ± 0.06	1.9 ± 0.1	0.961 ± 0.007	0.260 ± 0.002
0.5	1.966 ± 0.003	3.94 ± 0.03	2.2 ± 0.6	0.789 ± 0.004	0.213 ± 0.001
0.1	0.467 ± 0.004	3.90 ± 0.05	3.5 ± 0.4	0.388 ± 0.007	0.105 ± 0.002
[4]	I _{max}	<i>k</i> ₁	k ₂	$\Phi_{\rm CL}$	$\Phi_{\rm S}$
(mmol L^{-1})	$(E s^{-1}) \times 10^{12}$	$(s^{-1}) \times 10^3$	$(s^{-1}) \times 10^{1}$	$(E mol^{-1}) \times 10^{3}$	$(E \text{ mol}^{-1}) \times 10^2$
1.00	0.184 ± 0.004	3.8 ± 0.1	3.2 ± 0.7	0.156 ± 0.001	0.195 ± 0.002
0.75	0.157 ± 0.002	3.7 ± 0.1	3.2 ± 0.6	0.138 ± 0.001	0.172 ± 0.001
0.50	0.136 ± 0.001	3.8 ± 0.1	3.5 ± 0.3	0.116 ± 0.001	0.145 ± 0.001
0.25	0.091 ± 0.003	3.8 ± 0.1	3.3 ± 0.1	0.077 ± 0.001	0.097 ± 0.001
0.10	0.048 ± 0.001	3.8 ± 0.1	3.1 ± 0.4	0.042 ± 0.001	0.052 ± 0.001
[5]		k_1	k ₂	$\Phi_{\rm CL}$	$\Phi_{\rm S}$
(mmol L ⁻¹)	$(E s^{-1}) \times 10^{12}$	$(s^{-1}) \times 10^3$	$(s^{-1}) \times 10^{1}$	$(E mol^{-1}) \times 10^{3}$	$(E \text{ mol}^{-1}) \times 10^2$
1.00	15.1 ± 0.3	4.21 ± 0.07	4.7 ± 0.4	11.68 ± 0.09	2.60 ± 0.02
0.75	12.3 ± 0.1	4.19 ± 0.04	4.6 ± 0.8	9.51 ± 0.07	2.11 ± 0.02
0.50	9.2 ± 0.1	4.25 ± 0.04	5 ± 1	7.00 ± 0.02	1.56 ± 0.01
0.25	5.2 ± 0.1	4.21 ± 0.03	5 ± 1	4.02 ± 0.02	0.89 ± 0.01
0.10	2.4 ± 0.1	4.25 ± 0.05	5 ± 1	1.82 ± 0.01	0.41 ± 0.01
Mean value	-	3.7 ± 0.3	3 ± 1	-	-

Table S2. Observed fall (k_1) and rise (k_2) rate constants, and relative chemiluminescence emission yields (Q_{rel}) for the peroxyoxalate reaction with **1** (1.0 mmol L⁻¹) as activator, varying the concentration of IMI-H. In EtOAc, at 25 °C, [TCPO] = 0.1 mmol L⁻¹, [H₂O₂] = 0.1 mmol L⁻¹.

[IMI-H]	k ₁	k ₂	Q _{rel}
(mmol L ⁻¹)	(S ⁻¹)	(S ⁻¹)	
20.0	0.410 ± 0.004	*	0.01
10.0	0.114 ± 0.001	*	0.12
8.0	0.077 ± 0.001	*	0.18
6.0	0.047 ± 0,001	*	0.26
4.0	0.026 ± 0.002	*	0.37
2.0	0.0078 ± 0.0001	2.19 ± 0,01	0.61
0.9	0.0030 ± 0.0001	0.72 ± 0,01	0.81
0.7	0.00230 ± 0.00002	$0.440 \pm 0,007$	0.86
0.5	0.00150 ± 0.00002	0.31 ± 0,03	0.93
0.2	0.00062 ± 0.00004	0.100 ± 0,009	1.00

*not measurable

Table S3. Observed fall (k_1) and rise (k_2) rate constants, and relative chemiluminescence emission yields (Q_{rel}) for the peroxyoxalate reaction with **1** (1.0 mmol L⁻¹) as activator, varying the concentration of H₂O₂. In EtOAc, at 25 °C, [TCPO] = 0.1 mmol L⁻¹, [IMI-H] = 1.0 mmol L⁻¹.

[H ₂ O ₂]	k ₁	k ₂	Q_{rel}
(mmol L ⁻¹)	(S ⁻¹)	(S ⁻¹)	
10.0	0.00300 ± 0.00005	0.42 ± 0.01	0.89
5.0	0.00200 ± 0.00003	0.237 ± 0.001	0.93
2.5	0.00170 ± 0.00002	0.13 ± 0.01	0.97
1.0	0.00140 ± 0.00002	0.053 ± 0.005	0.98
0.50	0.00130 ± 0.00002	0.026 ± 0.001	0.99
0.25	0.00120 ± 0.00004	0.0190 ± 0.0006	1.00

Table S4. Chemiluminescence (Φ_{CL}) and singlet excited state formation (Φ_S) quantum yields for the peroxyoxalate reaction at high concentrations of the activators. In EtOAc, at 25 °C, [TCPO] = 0.1 mmol L⁻¹, [IMI-H] = 1.0 mmol L⁻¹, [H₂O₂] = 10.0 mmol L⁻¹.

ACT	[ACT]	Φ_{CL}	Φs
	(mmol L ⁻¹)	(E mol ⁻¹) × 10 ³	(E mol ⁻¹) × 10 ³
1	10.0	1.04 ±0.01	2.30 ± 0.02
2	2.0*	1.06 ± 0.01	2.72 ± 0.03
3	10.0	1.15 ± 0.01	3.10 ± 0.03
4	10.0	0.229 ± 0.003	2.86 ± 0.03
5	10.0	21.6 ± 0.4	48 ± 1

*Insoluble in EtOAc at concentrations above 2.0 mmol L⁻¹.

Figures Section

Figure S1. Photometric assays (left) for the determination of the molar extinction coefficient (ϵ) of lophine derivatives **1–5**, determined as the angular coefficient of the linear plots setting the linear coefficient as zero (right); r > 0.9999 in all cases.

Figure S2. Absorption and emission spectra for the lophine derivatives **1**–**5** (in EtOAc, at 25 °C).

Figure S3. Chemiluminescence emission time-profiles for the peroxyoxalate reaction using lophine derivatives **1**–**5** as activators. In EtOAc, at 25 °C, [TCPO] = 0.1 mmol L⁻¹, [IMI-H] = 1.0 mmol L⁻¹, $[H_2O_2] = 10.0$ mmol L⁻¹; intensity in arbitrary units; experiments for each concentration were conducted at least three times. Assays without IMI-H or TCPO were conducted at the highest ACT concentration.

Figure S4. Spectra for lophine (1.0 mmol L⁻¹) fluorescence (black line) and for the peroxyoxalate reaction chemiluminescence emission (red line, in EtOAc, at 25 °C, [TCPO] = 0.1 mmol L⁻¹, [IMI-H] = 1.0 mmol L⁻¹, [H₂O₂] = 10.0 mmol L⁻¹).