Supplementary information for

Catechin as a new improving agent for photo-Fenton-like system at near-neutral

pH for the removal of inderal

Zongping Wang^a, Yizhou Guo^a, Zizheng Liu*^{ab}, Xiaonan Feng^a, Yiqun Chen^a, Tao

Tao^a

^aSchool of Environmental Science and Engineering, Huazhong University of Science

and Technology, Wuhan, 430074, China

^bSchool of Civil Engineering, Wuhan University, Wuhan, 430074, China

The supplementary materials (SM) contain complementary data concerning the adopted analytical methods and procedures, 9 figures and 2 tables.

Figure A.1 – The UV-vis spectra and the molecular structure of Inderal

Figure A.2 – The calibration curves for the detection of inderal (a) , phenol (b) and Fe(III) (c)

Figure A.3 – The photodegradation of inderal by Fe(III)-nordihydroguaiaretic acid(a) and Fe(III)- pyrocatechol violet complexes(b) at different pH values. Reaction conditions included the following: [Fe(III)]= 50 μ mol/L, [nordihydroguaiaretic acid]= 200 μ mol/L, [pyrocatechol violet]= 200 μ mol/L, [inderal]=10 μ mol/L.

Figure A.4 – The UV-vis spectra of Fe(III), catechin, a mixture of Fe(III) and catechin at (a) pH=6.0 and (b) pH=3.0. ([Fe(III)]=20 μ mol/L, [catechin]=200 μ mol/L) **Figure A.5** – The determination of Fe(III)-catechin conditional stability constant by

continuous variation methods at pH 6.0.

Figure A.6 – (a) Determination of •OH (μ mol/L) in different pH conditions and reduction rate of Fe(III) in photo/dark reaction (b). Reaction conditions included the following: [Fe(III)]= 50 μ mol/L, [catechin]= 200 μ mol/L, [inderal]=10 μ mol/L, pH = 6.0.

Figure A.7 – HPLC chromatograms and (+)-ESI-MS spectra of inderal and its photodegradation products.

Figure A.8 – The total ions chromatogram of GC-MS and comparison of mass spectra between photoproducts and standard compounds.

Table A.1 The molecular structure of catechin, nordihydroguaiaretic acid, pyrocatecholviolet, 2-chloro-3',4'-dihydroxyacetophenone, 2,3-dihydroxybenzoic acid **Table A.2** Inderal and its major photolysis products in the Fe(III)-catechin system by GS-MS analysis.

1. The UV-vis spectra and the molecular structure of inderal

Figure A.1 – The UV-vis spectra and the molecular structure of Inderal

2. Calibration curve

Figure A.2 – The calibration curves for the detection of inderal (a) , phenol (b) and Fe(III) (c)

3. The photodegradation of inderal by Fe(III)-nordihydroguaiaretic acid and Fe(III)-

pyrocatechol violet complexes at different pH values

Figure A.3 – The photodegradation of inderal by Fe(III)-nordihydroguaiaretic acid(a) and Fe(III)- pyrocatechol violet complexes(b) at different pH values. Reaction conditions included the following: [Fe(III)]= 50 μ mol/L, [nordihydroguaiaretic acid]= 200 μ mol/L, [pyrocatechol violet]= 200 μ mol/L, [inderal]=10 μ mol/L.

4. The molecular structure of five Fe(III) ligands

Table A.1 The molecular structure of catechin, nordihydroguaiaretic acid,pyrocatecholviolet, 2-chloro-3',4'-dihydroxyacetophenone, 2,3-dihydroxybenzoic acid

Name	Molecular structure
catechin	HO OH HO OH OH OH
nordihydroguaiaretic acid	HO HO CH ₃ CH ₃ OH
pyrocatechol violet	OH OH O=S=O OH OH
2,3-dihydroxybenzoic acid	O OH OH
2-chloro-3',4'-dihydroxyacetophenone	HO OH CI

Figure A.4 – The UV-vis spectra of Fe(III), catechin, a mixture of Fe(III) and catechin at (a) pH=6.0 and (b) pH=3.0. ([Fe(III)]=20 μ mol/L, [catechin]=200 μ mol/L)

6. The determination of Fe(III)-catechin conditional stability constant

Figure A.5 – The determination of Fe(III)-catechin conditional stability constant by continuous variation methods at pH 6.0

7. The determination of •OH and Fe(II)

Figure A.6 – (a) Determination of •OH (μ mol/L) in different pH conditions and reduction rate of Fe(III) in photo/dark reaction (b). Reaction conditions included the following: [Fe(III)]= 50 μ mol/L, [catechin]= 200 μ mol/L, [inderal]=10 μ mol/L, pH = 6.0.

8. The main intermediates and the mass spectra of photodegradation products

GS-MS analysis.

Table A.2 Inderal and its major photolysis products in the Fe(III)-catechin system by

Retention time (min)	Name	Molecular structure
54.96	inderal	O OH H

Figure A.7 – HPLC chromatograms and (+)-ESI-MS spectra of inderal and its photodegradation products.

inderal

3,4-dihydroxy mandelic acid

protocatechuic acid

gallic acid

malic acid

2-methyl-3-hydroxylsuccinic acid

2-methylglutaric acid

Figure A.8 – The total ions chromatogram of GC-MS and comprison of mass spectra between photoproducts and standard compounds.