Electronic Supplementary Information

Fabrication of Functional Polypyrrole (PolyPyr)-Nanotubes Using Anodized Aluminium Oxide (AAO) Template Membranes. Compromising between Effectiveness and Mildness of Template Dissolution Conditions for a Safe Release of PolyPyr-Nanostructures

Natasha Esman^{,a} and Jean-Paul Lellouche*^a

^a Bar-Ilan University, Department of Chemistry, Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials, Ramat-Gan 52900, Israel. Tel: 972-3-531 8324; Fax: 972-3-738 4053; E-mail: <u>lellouj@mail.biu.ac.il</u>

1. Fabrication of polyCOOH polyPyr-nanotubes using nanoporous AAO membranes as hard templates (SEM/TEM analyses)

Figure ESI-1. SEM microphotographs of poly(**2**) nano<u>tubes</u> obtained by *acidic* digestion of AAO membranes: (**a**) & (**b**) 100 & 200 nm-sized pores respectively

Figure ESI-2. SEM microphotographs of poly(**3**) nano<u>tubes</u> obtained by *acidic* digestion of AAO membranes: (**a**) & (**b**) 100 & 200 nm-sized pores respectively

Figure ESI-3. TEM microphotographs of poly(**2**) and poly(**3**) nano<u>tubes</u> obtained by *acidic* digestion of AAO membranes (200 nm-sized pore diameter, **a** & **b** respectively)

	С	N	0	Al	Cl	Си	Zn
Base(2)_pt1	70.66	18.45	9.88	0.19	0.31	0.13	0.39

Figure ESI-4. HR-SEM microphotograph of poly(**DPL 1**) nano<u>tubes</u> (100 nm-sized pores of AAO membrane, *acidic* template dissolution) with atomic compositional EDS analysis showing the absence of the <u>Fe</u> element due to *acidic* digestion conditions

2. Morphological features of poly(2-3) nano<u>tubes</u> (*acidic* digestion conditions of AAO templating membranes, 50 counted objects for averaged measurements using an Image J software)

Nano <u>tube</u>	Pore size (nm)	Length	Diameter (nm)	Aspect ratio	Wall thickness (nm)
Poly(2)	100	11.8	270.7	43.4	26.8
	200	15.8	335.1	47.2	68.5
Poly(3)	100	11.7	272.3	42.9	29.5
	200	7.8	252.3	30.8	34.6

Table data relate to poly(2-3) nanotubes obtained using *the same LPP protocol* (p. 2 of the manuscript). Both diameter and wall thickness differences for poly(2)/poly(3)nanotubes obtained for <u>100 nm</u>-sized AAO templates are minimal, i.e. 270.7 *versus* 272.3 nm and 26.8 *versus* 29.5 nm respectively. This is no longer the case for <u>200 nm</u>-sized AAO templates. Significant diameter and wall thickness differences are observed, i.e. 335.1 *versus* 252.3 and 68.5 versus 34.6 nm. This intriguing phenomenon may arise from a better dynamic availability of *less sterically demanding* monomer **2** *versus* monomer **3** during *intra-pore* LPP oxidations/polymerizations. Nevertheless and for both types of templates, aspect ratio values are around twice higher than the ones observed for same nanostructures released during *basic* AAO template digestions.

3. Illustrative FT-IR spectroscopy of polyPyr-nanotubes

Figure ESI-5. FT-IR spectra of polyCOOH poly(**1-2**) polyPyr-nanotubes (*acidic* digestion for both 100 & 200 nm-sized pores of AAO templating membranes)