Supporting Information

Synthesis of Optically Active Green Fluorescent π -Conjugated Fluorene Polymers Having Chiral Schiff Base in the Side Chain

K. Asai, G. Konishi,* K. Sumi, S. Kawauchi konishi.g.aa@m.titech.ac.jp

Experimental

2,7-diphenylfluorenone (3)

Synthesis of **3** was reported in 50's (Barnett, M. D.; Daub, G. H.; Hayes, F. Newton; O., Donald G., "Liquid scintillators. VI. 2-Aryl- and 2,7-diarylfluorenes." *J. Am. Chem. Soc.* **1959**, *81*, 4583.). Our procedure is as follows : To a solution of 2,7-dibromofluorenone (1.352 g, 4 mmol), (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (1.837 g, 9 mmol), and Pd(PPh₃)₄ (1.0 mol %) in toluene (30 ml) was added 2M aqueous Na₂CO₃ solution under argon atmosphere. The mixture was degassed and stirred 90 °C. The mixture was extracted with toluene and the organic layer was washed with water and dried over MgSO₄. After removal of the solvent, the residue was purified by column chromatography (toluene : hexane = 1 : 1) as eluent to give 0.752g (57 %) of yellow solids. Further purification could be achieved by recrystallization from MeOH. ¹H NMR (400 MHz, CDCl₃) : 7.94 (d, 2H, *J* = 1.6 Hz), 7.75 (dd, 2H, *J* = 8.0, 1.6Hz), 7.65 (s, 2H), 7.63 (t, 4H, *J* = 8.0 Hz), 7.48 (t, 4H, *J* = 7.2 Hz), 7.39 (t, 2H, *J* = 7.2 Hz) ppm.; ¹³C NMR (100 MHz, CDCl₃) : 193.7, 143.1, 142.2, 140.0, 135.2, 133.3, 129.0, 128.0, 126.8, 123.0, 120.7 ppm.; FT-IR (KBr) : 3057 (Ar–H), 1709 (C=O), 1604 (Ar–C–C) cm⁻¹.

See, Figure S8, S12, S19.

Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2010

Scheme

Scheme S1.

Figures

Figure S1. ¹H NMR spectrum of **1R** in DMSO- d_6 at 30 ^oC.

Figure S2. ¹H NMR spectrum of **1R** from 7.0-8.3 ppm in DMSO- d_6 at 30 °C.

Figure S3. ¹H NMR spectrum of **1S** in DMSO- d_6 at 30 °C.

Figure S4. ¹H NMR spectrum of **1rac** in DMSO- d_6 at 30 ^oC.

Figure S5. ¹H NMR spectrum of **2R** in CDCl₃.

Figure S6. ¹H NMR spectrum of **2S** in CDCl₃.

Figure S7. ¹H NMR spectrum of **2rac** in CDCl₃.

Figure S8. ¹H NMR spectrum of **4** in CDCl₃.

Figure S9. ¹³C NMR spectrum of **1R** in CDCl₃.

Figure S10. ¹³C NMR spectrum of **1S** in CDCl₃.

Figure S11. ¹³C NMR spectrum of **1rac** in CDCl₃.

Figure S12. ¹³C NMR spectrum of **4** in CDCl₃.

Figure S13. FT-IR spectrum of 1R.

Figure S15. FT-IR spectrum of 1rac.

Figure S16. FT-IR spectrum of **2R**.

Figure S17. FT-IR spectrum of 2S.

Figure S18. FT-IR spectrum of 2rac.

Figure S19. CD and UV-vis spectra of monomers in 10^{-5} M THF solution.

Figure S20. IR spectrum of 5% of 2,7-dibromofluorenone & 95 % of 1R.

Figure S21. IR spectrum of 10 % of 2,7-dibromofluorenone & 90% of 1R.

Figure S22. UV-vis spectra of **3** and **4** in 10^{-5} M THF solution.

Figure S23. Fluorescence spectra of **3** and **4** in 10^{-5} M THF solution. ($\lambda_{ex} = 320$ nm)

Figure S24. Fluorescence decay curves of **2R** in 10^{-5} M THF solution ($\lambda_{ex} = 370$ nm).

Figure S25. Fluorescence decay curves of **3** and **4** in 10^{-5} M THF solution ($\lambda_{ex} = 320$ nm).

Figure 27. CD & UV-vis spectra of 2S at two concentrations in THF solution.

Figure 28. CD spectra of **2R** in 10^{-5} M co-solvent (THF / 1-octanol = 3 : 7).

Figure S29. FDCD spectra of $2\mathbf{R}$ and $2\mathbf{S}$ in 10^{-5} M THF solution.

Molecular orbital calcinations were carried out using Gaussian 03 program.

Table S1: Cartesian coordinate for 4 optimized at B3LYP/6-31G(d)

		200000		•		
Center	At	tomic	Atomic	Coordinates (Angstroms)		ms)
Number	N	lumber	Туре	X Y	Z	
1	1	0	-2.846505	0.295256	0.351948	
2	6	0	-2.453686	-0.678158	0.087136	
3	6	0	-1.495660	-3.261613	-0.471043	
4	6	0	-1.082285	-0.906358	0.005554	
5	6	0	-3.368344	-1.730484	-0.125807	
6	6	0	-2.867642	-3.012345	-0.408174	
7	6	0	-0.603458	-2.214834	-0.262263	
8	1	0	-3.565112	-3.823212	-0.597661	
9	1	0	-1.135616	-4.264447	-0.685218	
10	6	0	0.866105	-2.208164	-0.243573	
11	6	0	3.605015	-1.592228	-0.069796	
12	6	0	1.295394	-0.900604	0.044236	
13	6	0	1.805459	-3.216658	-0.445754	
14	6	0	3.162475	-2.899479	-0.354645	
15	6	0	2.641969	-0.583769	0.128610	

Standard orientation:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
23 6 0 1 203666 2 253929 1 090944	
23 0 0 -1.273000 2.233020 1.707044	
24 1 0 -0.451098 2.556626 2.619432	
25 1 0 -1.654416 1.280060 2.338527	
26 1 0 -2.094831 2.990832 2.107594	
27 6 0 -0.423290 3.558728 0.013924	
28 6 0 0.278049 6.150782 -0.819605	
29 6 0 -1.364331 4.390108 -0.604148	
30 6 0 0.877456 4.039413 0.204638	
31 6 0 1.225050 5.325826 -0.209012	
32 6 0 -1.020107 5.678187 -1.017299	
33 1 0 -2.376906 4.025201 -0.767722	
34 1 0 1.615357 3.388610 0.662124	
35 1 0 2.240538 5.683633 -0.058028	
36 1 0 -1.763565 6.307999 -1.499323	
37 1 0 0.551398 7.151343 -1.144374	
38 6 0 5.055042 -1.285245 0.019803	
39 6 0 7.808905 -0.699021 0.194305	
40 6 0 5.540585 -0.369235 0.968990	
41 6 0 5.981142 -1.899548 -0.840873	
42 6 0 7.342099 -1.610759 -0.754287	
43 6 0 6.901213 -0.079067 1.055066	
44 1 0 4.846601 0.099990 1.660706	
45 1 0 5.626641 -2.588608 -1.602455	
46 1 0 8.038028 -2.092090 -1.436517	
47 1 0 7.253718 0.626984 1.802473	
48 1 0 8.869668 -0.473047 0.261407	
49 6 0 -4.830502 -1.484394 -0.046052	
50 6 0 -7.607826 -1.015786 0.105896	
51 6 0 -5.693134 -2.432720 0.530467	
52 6 0 -5.391614 -0.296074 -0.544820	
53 6 0 -6.764041 -0.063746 -0.468972	
54 6 0 -7.065759 -2.201760 0.604743	
55 1 0 -5.279264 -3.346485 0.947943	
56 1 0 -4.748651 0.438973 -1.021248	
57 1 0 -7.175844 0.859037 -0.869169	
58 1 0 -7.711883 -2.946249 1.062498	
59 1 0 -8.677693 -0.835319 0.164550	

Table S2. TD-DFT results for 4.

First Excited State 3.052 eV 406 nm f = 0.110HOMO ->LUMO 0.673

Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2010

Third Excited State 3.895 eV 318 nm f = 0.437 HOMO-8 -> LUMO -0.25021 HOMO-4 -> LUMO 0.11213 HOMO-2 -> LUMO 0.16500 HOMO -> LUMO+1 0.56435

Figure S30. HOMO and LUMO for 4.

The observed fluorescence may be derived form the first excited state. The absorption band is corresponded to CT band. The intramolecular CT structure may be formed after irradiation. By using this hypothesis, it is reasonable to explain the large Stokes shift of the imino-fluorene chromophore **4**.

Figure S31. UV-vis spectra of 2 in several solvents.