Supporting Information to:

Determination of the Propagation Rate Coefficient of Acrylonitrile

Tanja Junkers, ^{1,2,*} Sandy P. S. Koo¹ and Christopher Barner-Kowollik^{1,*}

¹Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie,

Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany

²Universiteit Hasselt, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium

Corresponding Authors, Tel.: +49 721 608-5641, Fax: +49 721 608-5740

tanja.junkers@uhasselt.be, <u>christopher.barner-kowollik@kit.edu</u>

Experimental

Materials

Acrylonitrile (Acros, ≥ 99 %) was percolated over a column of basic alumina to remove the inhibitor. 2,2-Dimethoxy-2-phenylacetophenone (DMPA, Aldrich, 99%) and propylene carbonate (Aldrich, ≥ 99 %) were used as received.

Pulsed Laser Polymerization

Solutions of acrylonitrile in propylene carbonate solution (~5 mol·L⁻¹) containing variable concentrations of DMPA (ranging from 1 to $20 \cdot 10^{-3}$ mol·L⁻¹) were transferred into sample vials (containing about 0.3 mL of reaction solution each) and sealed with rubber septa. Oxygen was removed by purging the samples with nitrogen for about 2 min. The sample vial was subsequently placed into a stainless steel sample holder that was temperature controlled by a thermostat (VWR 1196D). The temperature was measured directly at the sample. The samples were allowed to equilibrate in temperature for close to 3 minutes and were subsequently initiated by laser pulsing at

constant repetition rates of up to 500 Hz. Laser initiation was achieved by a Xantos XS-500 operated at 351 nm. The laser beam, which was adjusted to an energy of close to 2.5 mJ/pulse hitting the sample, was redirected to illuminate the vial from the bottom. After polymerization, hydroquinone/methanol solution was added to the samples to prevent further reactions. Methanol and the carbonate were then removed in a vacuum oven at 60 °C to obtain the pure polymer. Typically, about 2-3 mg of polymer are recovered (corresponding to monomer conversions of approximately 1-2%) and the full sample is subjected to SEC analysis in concentrations of about 2 mg·mL⁻¹.

Molecular weight determination

For the determination of molecular weight distributions (MWD) obtained from PLP, a Varian PL50 system, comprising an auto injector, a Polymer Laboratories 5.0 µm bead-size guard column, followed by three linear PL columns (PLgel 5 µm MIXED-C) and a differential refractive index detector using DMAc/0.03 % LiBr as the eluent at 50 °C with a flow rate of 1 mL·min⁻¹ was used. The SEC system was calibrated using narrow polystyrene standards ranging from 160 to $6 \cdot 10^6$ g mol⁻¹. The resulting molecular weight distributions have been recalibrated employing literature Mark-Houwink parameters for polyacrylonitrile ($K = 27.4 \cdot 10^{-5}$ dL·g⁻¹ and a = 0.764)¹ and for polystyrene ($K = 12.1 \cdot 10^{-5}$ dL·g⁻¹ and a = 0.69).²

<i>T</i> / °C	п	v	$c_{\rm M}$ /	c _{DMPA} /	L_1	I	<i>k</i> _{p,1} /	<i>k</i> _{p,2} /	k _{p,1} /
			mol·L ⁻¹	mol·L ⁻¹		L_2	$L \cdot mol^{-1} \cdot s^{-1}$	$L \cdot mol^{-1} \cdot s^{-1}$	<i>k</i> _{p,2}
50.1	1500	500	5.29	0.021	59.62	122.2	5633	5777	0.98
50.0	2000	500	5.29	0.021	61.81	115.7	5840	5470	1.07
50.0	2000	500	5.29	0.010	60.96	115.7	5760	5470	1.05
50.0	2000	500	5.29	0.010	59.62	117.0	5633	5530	1.02
50.0	2000	500	5.96	0.0053	66.65	123.6	5593	5187	1.08
49.9	2000	500	5.29	0.0053	58.08	108.6	5488	5134	1.07
50.0	2000	500	5.29	0.0021	59.62	112.0	5633	5293	1.06
50.0	3000	500	5.29	0.0021	60.96	114.5	5760	5410	1.06
49.9	2000	500	5.29	0.0053	58.08	108.6	5488	5134	1.07
50.0	2000	400	5.96	0.0053	80.51	140.8	5404	4729	1.14
50.0	2000	300	5.96	0.0053	108.42	186.7	5458	4702	1.16
50.0	2000	200	5.96	0.0053	147.15	258.5	4939	4339	1.14
50.0	2000	100	5.96	0.0053	250.24		4200		
50.0	1000	100	5.96	0.0053	244.87	419.1	4109	3517	1.17

Table S1 Collated experimental results from PLP-SEC of AN under variation of initiator concentration and pulse frequency (n denotes the number of laser pulses applied and ν is the pulse repetition rate)

T/°C	и	I.	I.	<i>k</i> _{p,1} /	k _{p,2} /	k _{p,1} / k _{p,2}
17 C	п	L_{1}	L_2	$L \cdot mol^{-1} \cdot s^{-1}$	$L \cdot mol^{-1} \cdot s^{-1}$	
3.6	3000	24.28		2294		
2.6	5000	23.53		2223		
9.9	5000	28.10		2655		
11	4000	28.99		2740		
20.6	4000	34.60		3269		
20.7	4000	33.19		3136		
30	4000	40.84	71.50	3859	3378	1.14
30	3000	41.27		3899		
40.1	3000	47.70	83.59	4507	3949	1.14
40.1	2500	48.20	83.59	4554	3949	1.15
49.9	2000	58.08	108.68	5488	5134	1.07
60.1	2000	74.54	132.95	7042	6281	1.12
60.2	1500	73.00	128.77	6897	6083	1.13
70.3	1000	90.89	156.12	8588	7375	1.16
70.6	800	92.82	159.52	8770	7536	1.16
76.1	700	99.90		9438		
76.8	800	91.85	156.12	8678	7375	1.18

Table S2 Collated experimental results from PLP-SEC of AN with $c_{\text{monomer}} = 5.29 \text{ mol} \cdot \text{L}^{-1}$, $c_{\text{DMPA}} = 5.3 \cdot 10^{-3} \text{mol} \cdot \text{L}^{-1}$ at a pulse repetition rate of 500 Hz (*n* denotes the number of laser pulses applied)

Selected examples for PLP distributions and their derivatives

(molecular weights given are based on direct polystyrene calibration, for recalibrated values see Tables S1 and S2)

Frequency variation, 50 °C, 500 Hz

Temperature variation, 2 °C, 500 Hz

Temperature variation, 41 °C, 500 Hz

Temperature variation, 60 °C, 500 Hz

[1] (a) Y. Fujisaki, H. Kobayashi, *Chem High Polym*, 1962, 19, 81; (b) J. Brandrup, E. H. Immergut, E. A. Grulke, *Polymer Handbook 4th edition*, John Wiley and Sons, New York, 1999.

[²] C. C. Walker, J. Polym. Sci. A. Polym. Chem., 1988, **26**, 1649-1657.