'Isothermal' phase transitions and supramolecular architecture changes in thermorresponsive polymers via acid-labile side-chains

Felicity Heath,^a Aram Omer Saeed,^a Sivanand S. Pennadam,^a Kristofer J. Thurecht^b and **Cameron Alexander***^a

Supporting Information

Including: ¹H NMR of P5, P1-g-PEI and ¹³C NMR of P5-g-PEI, and TEM of P4-g-PEI at pH 7.4 and 5.6

Figure S1. ¹H NMR of PNIPAM-co-TMPDA (91:9) (P5) in DMSO-d₆

Figure S2. ¹H NMR of P1-g-PEI in D₂O

Figure S3. ¹³C NMR spectrum of P5-g-PEI in D₂O at 10°C using a cryoprobe. Signals due to aromatic sidechains are strongly apparent owing to enhanced solvation at lower temperatures.

Figure S4 Transmission electron micrographs of P4-g-PEI from solutions originally at 37°C and rapidly dehydrated at 37°C. i) and ii) show P4-g-PEI at pH 7.4 and pH 5.6 respectively. Micellar-like structures present in images (i-iii) are shown in cartoons to depict postulated species present from TEM