ELECTRONIC SUPPORTING INFORMATION

Investigation on thiol-(meth)acrylate Michael addition reactions using

various amine and phosphine catalysts

Guang-Zhao Li, ^{2, 1} Rajan K. Randev, ¹ Alexander H. Soeriyadi, ³ Gregory Rees, ¹ Cyrille Boyer, ³ Zhen Tong ², Thomas P. Davis, ³ C. Remzi Becer, ¹ David M. Haddleton*¹

¹ Department of Chemistry University of Warwick, Coventry, Warwickshire, CV4 7AL, UK

- ² Research Institute of Materials Science, South China University of Technology, Guangzhou
 510640, China
- ³ Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

*To whom correspondence should be addressed (Tel: +44 2476 523256)

E-mail: <u>d.m.haddleton@warwick.ac.uk</u>

Contents

Additional characterization data for MMA and HEMA dimers

Figure S1. ¹H NMR spectra of thiol-Michael addition of MMA with 1-dodecanethiol using 0.05 eq of DMPP in d_6 -acetone P4.

Figure S2. ¹H NMR (*top*) and ¹³C NMR (*bottom*) (CDCl₃, 25 $^{\circ}$ C, 400 MHz) spectra of MMA-DT (P4).

Figure S3. ESI-Mass spectrum of P3 (left), P5 (right).

Figure S4. ESI-Mass spectrum from 1000 to 1100 Da of poly(OEG-MA) after modification with different thiols (HA1 to HA4, see Table 3).

Note: all the populations are attributed to expected compounds quaternized with Na^+ and H^+ in the case of HA4 and HA3, and quaternized with Na^+ for HA1 and HA2. The populations were spaced by 44 Da corresponding to ethylene glycol unit.

Figure S5. Effect of adding 1.4 equivalents of pentyl amine to PEGMEMA, Lgz137 PEGMEMA475/PA=1/1.4 in acetone as followed by ¹H NMR.

Figure S6. Effect of adding 5.4 equivalents of pentyl amine to PEGMEMA, , Lgz138 PEGMEMA475/PA=1/5.4 in acetone as followed by ¹H NMR.

Figure S7. Effect of adding 10.8 equivalents of pentyl amine to PEGMEMA, Lgz138 PEGMEMA475/PA=1/10.8 in acetone as followed by ¹H NMR.

Table S1. Additional data using TCEP as nucleophilic catalyst.

Table S2. Identified Peaks in the ESI-MS of Products of Thiol-PEGMEMA₄₇₅ dimer reaction showing all mass agreements with the desired product. Error is well within the instrumentation error of 0.3 amu for LCQ-Deca.

Table S3. Mass identified in the Mass Spectrum showed in Figure 8 in the manuscript with the error is fall well within the error of the instrument of ± 0.3 Da.

Characterisation data for methacrylic dimers.

MMA DIMER

¹H NMR (400 MHz, Acetone- d_6), $\delta = 6.15$ (d, J = 1.6 Hz, 1H, 1/2 CH₂=), 5.57 (d, J = 1.3 Hz, 1H, 1/2 CH₂=), 3.69 (s, 3H, =C-COOCH₃), 3.59 (s, 3H, C-COOCH₃), 2.59 (s, 2H, =C-CH₂), 1.12 (s, 6H, 2*CH₃)

¹³C NMR (400 MHz, Acetone-*d*₆), δ = 177.44 (C-*C*=O), 168.26 (=C-*C*=O), 138.74 (=C), 128.25 (CH₂=), 52.36 (COOCH₃), 52.06 (COOCH₃), 43.46 (CH₂), 42.02 (*C*(CH₃)₂), 25.40 (2*CH₃).

ESI-MS Calcd. for $C_{10}H_{16}NaO_4^+$ (M+Na⁺)=223.09, Found 223.09.

HEMA DIMER

 1 H NMR (400 MHz, D₂O)

 $\delta = 6.33$ (d, J = 0.9 Hz, 1H, 1/2 CH₂=), 5.75 (d, J = 0.5 Hz, 1H, 1/2 CH₂=), 4.25-4.27 (m, 2H, COOCH₂), 4.14-4.16 (m, 2H, COOCH₂), 3.85-3.87 (m, 2H, CH₂OH), 3.81-3.83 (m, 2H, CH₂OH), 2.67 (s, 2H, =C-CH₂), 1.21 (s, 6H, 2*CH₃)

ESI-MS Calcd. for $C_{12}H_{20}NaO_6^+$ (M+Na⁺)=283.12, Found 283.12.

Figure S1. ¹H NMR spectra of thiol-Michael addition of MMA with 1-dodecanethiol using 0.05 eq of DMPP in d_6 -acetone **P4**.

Figure S2. ¹H NMR (*top*) and ¹³C NMR (*bottom*) (CDCl₃, 25 $^{\circ}$ C, 400 MHz) spectra of MMA-DT (**P4**).

Figure S3. ESI-Mass spectrum of P3 (left), P5 (right).

Figure S4. ESI-Mass spectrum from 1000 to 1100 Da of poly(OEG-MA) after modification with different thiols (HA1 to HA4, see Table 3).

Note: all the populations are attributed to expected compounds quaternized with Na^+ and H^+ in the case of HA4 and HA3, and quaternized with Na^+ for HA1 and HA2. The populations were spaced by 44 Da corresponding to ethylene glycol unit.

Figure S5. Effect of adding 1.4 equivalents of pentyl amine to PEGMEMA, Lgz137 PEGMEMA475/PA=1/1.4 in acetone as followed by ¹H NMR.

Figure S6. Effect of adding 5.4 equivalents of pentyl amine to PEGMEMA, , Lgz138 PEGMEMA475/PA=1/5.4 in acetone as followed by ¹H NMR.

Figure S7. Effect of adding 10.8 equivalents of pentyl amine to PEGMEMA, Lgz138 PEGMEMA475/PA=1/10.8 in acetone as followed by ¹H NMR.

Table S1.

Additional data using TCEP as nucleophilic catalyst.

acrylic	thiol	nucleophile	Molar ratios	solvent	Reaction time	% conversion
HEMA	2-ME	ТСЕР	1:1.5:0.1	D_2O	44.1	22
dMMA	РТ	TCEP	1:1.5:0.05	DMSO	95.9	3
dHEMA	2-ME	TCEP	1:1.5:0.1	D_2O	15.8	4
dHEMA	2-ME	TCEP	1:1.5:0.1	D_2O	26.2	85

Table S1. Identified Peaks in the ESI-MS of Products of Thiol-PEGMEMA₄₇₅ dimer reaction showing all mass agreements with the desired product. Error is within the instrumentation error

Compound	m/z	m/z	m/z
Compound	experimental	theoretical	error

of 0.3 amu for LCQ-Deca.

$\left[\begin{array}{c} R \\ 0 \\ 0 \\ 0 \\ 0 \\ R \\ R \\ R \\ R \\ R \\$	1095.6	1095.6	0
$\left[\begin{array}{c} R \\ 0 \\ 0 \\ 0 \\ 0 \\ R \\ R \\ R \\ R \\ R \\$	1049.7 or 1027.7*	1049.5 or 1027.5*	0.2 or 0.2*
$\left[\begin{array}{c} R \\ O \\ O \\ O \\ R \\ R \\ R \\ O \\ R \\ O \\ R \\ O \\ O$	1077.7 or 1055.6*	1077.5 or 1055.6*	0.2 or 0*
$\left[\begin{array}{c} R \\ 0 \\ 0 \\ 0 \\ 0 \\ R \\ R \end{array}\right]^{Na^{+} \text{ or } H^{+}}$	1048.7 or 1026.5*	1048.6 or 1026.5*	0.1
$\begin{bmatrix} & R \\ & O \\ & O \\ & O \\ & R \\ & R \\ & R \end{bmatrix}^{Na^{+} \text{ or } H^{+}}$ $X : Glutathione$	1278.7 or 1256.5*	1278.6 or 1256.6*	0.1
$\begin{bmatrix} & R \\ & O \\ & O \\ & O \\ & O \\ R \\ R \\ R \end{bmatrix}^{Na^+ \text{ or } H^+}$ X : Glucose	1167.7 or 1145.7*	1167.7 or 1145.7*	0.1

Table S3. Mass identified in the Mass Spectrum showed in Figure 8 in the manuscript with the error is fall well within the error of the instrument of ± 0.3 Da.

Compound	m/z	m/z	m/z
$\left[\begin{array}{c} & R \\ & I \\ & 0$	1059.6	1059.6	0
$\left[\begin{array}{c} & R \\ I \\ & R \\ & R \end{array}\right]^{H^+}$	1087.7	1087.6	0.1
$\left[\begin{array}{c} R \\ 0 \\ 0 \\ 0 \\ R \\ R \\ R \\ R \\ R \\ R \\$	1049.7 or 1027.7*	1049.5 or 1027.5*	0.2 or 0.2*
$\left[\begin{array}{c} R \\ I \\ 0 \\ 0 \\ 0 \\ R \\ R \\ R \\ R \\ R \\ R \\ R$	1068.6	1068.5	0.1