Supporting information

Reversible thermo-responsive microphase separated supramolecular polyurethanes

Daniel Hermida Merino,^a Andrew T. Slark,^b Howard M. Colquhoun,^a Wayne Hayes,^a Ian W. Hamley^a*

^aDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK). Fax: (+ 44) 118-378-8450; Email: i.w.hamley@reading.ac.uk ^bHenkel UK Limited, Wexham Road, Slough, SL2 5DS (UK)

- Pages 2-5:Synthesis and characterisation of polybutadiene derivatives 1, 3, 5 and7
- Pages 6 : Time dependent FT-IR spectra for of 10, 8 and 6
- Pages 7 : Time dependent FT-IR spectra for of 9, 4 and 2
- Pages 8 : FT-IR spectra analysis of 9

Synthesis and characterisation of polybutadiene derivatives 1, 3, 5 and 7

Synthesis of 4-((4'- 2-[*bis*-(2-hydroxyethyl)-amino]-ethyl) ureidobenzyl)-phenylamino-carbonyl terminated poly(butadiene) 17

This analogue has been synthesised via the high dilution procedure described for 4,4'methylene*bis*(phenyl-carbamic acid 2-[*bis*-(2-hydroxyethyl)-amino]-ethyl ester) **1** (see section 2.2). 4-((4'- 2-[*bis*-(2-hydroxyethyl)-amino]-ethyl) ureidobenzyl)-phenyl-aminocarbonyl terminated poly(butadiene) diol **17** was produced as a elastomeric translucent solid in a 89.1% yield (7.09 g) starting from poly(butadiene) diol end capped with 4,4'methylenebis(phenylisocyanate) (7.04 g, 2.8 mmol) and *N,N- bis*-(2-hydroxyethyl-2H-)-ethylene diamine (0.876 g, 5.91 mmol).

IR (CDCl₃, KBr) v_{max}/cm^{-1} 3330, 3072, 2969, 2916, 2834, 1714, 1639, 1597, 1522, 1448, 1415.¹H NMR (250 MHz, CDCl₃) δ 1.24-1.43 (br, 2H_n, (CH₂)_n), 2.02 (br m, 9H_n, (4 × *cis*(CH=CH*CH*₂)_n + 4 × *trans* (CH=CH*CH*₂)_n + (CH=CH*CH*)_n), 2.50 (br, 12H, (4 × NCH₂) + (2 × CH₂N)), 3.19-3.27 (br, 4H, 2 × CH₂N), 3.42-3.50 (br m, 8H, 4 × OCH₂), 3.62-3.71 (br, 4H, (2 × OCH₂), 3.82-3.87 (m, 4H, 2 × ArCH₂Ar), 4.96 (br, 2H_n, (2 × CH=*CH*₂)_n), 5.34 (br, 2H_n, *(cis* CH= CH)_n), 5.46-5.55 (br, 2H_n, (*trans* CH= CH)_n), 5.67-5.89 (br, H_n, (CH₂=*CH*)_n), 6.55-6.70 (4 × NH), 7.04-7.10 (AA'XX' system, 8H, 8 × ArH), 7.19-7.26 (AA'XX' system, 8H, 8 × ArH); ¹³C NMR (62.5 MHz, CDCl₃) δ 25.0 (CH₃), 27.4-27.6 (CH₂)_n, 30.2 (CH₂)_n, 32.0 (CH₂)_n, 37.5 (CH)_n, 38.7 (CH₃), 43.7 (ArCH₂Ar), 51.3 (CH₂), 56.6 (CH₂), 59.6 (OCH₂), 71.6 (CH₂), 114.3-115.0 (*CH*₂=CH)_n, 136.2-137.2 (ArC), 142.7-144.2 (CH₂=*CH*)_n, 156.9 (*C*=O).

Synthesis of 4-((4'- carbamic acid 2-[*bis*-(2-hydroxyethyl)-amino]-ethyl ester) benzyl)-phenyl-amino-carbonyl terminated poly(ethylene-*co*-butylene) diol 14

This material was produced using a high dilute procedure described for 4,4'methylene*bis*(phenyl-carbamic acid 2-[bis-(2-hydroxyethyl)-amino]-ethyl ester) **21** (see section 2.2). The 4-((4'-Carbamic acid 2-[*bis*-(2-hydroxyethyl)-amino]-ethyl ester) benzyl)-phenyl-amino-carbonyl terminated poly(polybutadiene) diol **14** was produced as a translucent elastomeric solid in 84.9% yield (10.1 g), starting from poly(butadiene) diol end capped with 4,4'-methylenebis(phenylisocyanate) (10.67 g, 4.10 mmol) and triethanolamine (1.224 g, 8.2 mmol).

IR (CDCl₃, KBr) v_{max}/cm^{-1} ; 3434, 3337, 3072, 2917, 2845, 1731, 1706, 1638, 1597, 1522, 1414. ¹H NMR (250 MHz, CDCl₃) δ 1.22-1.48 (br, 2H_n, (*CH*₂)_n), 2.02 (br m, 9H_n, (4 × *cis*(CH= CHC*H*₂)_n + 4 × *trans* (CH=CHC*H*₂)_n + (CH=CHC*H*)_n), 2.69-2.73 (t, 8H, C*H*₂N, *J*=5), 2.79-2.83 (t, 4H, 4 × NC*H*₂, *J* = 5.0), 3.58-3.63 (t, 8H, 4 × C*H*₂, *J* = 7.5), 3.81-3.87 (m, 4H, 2 × ArC*H*₂Ar), 4.09-4.11 (t, 4H, (2 × OC*H*₂), 4.21-4.26 (m 4H, (2 × C*H*₂O), 4.96 (br, 2H_n, (2 × CH=C*H*₂)_n), 5.33-5.36 (br, 2H_n, (*cis* C*H*= C*H*)_n), 5.45-5.56 (br, 2H_n, (*trans* C*H*= C*H*)_n), 5.72-5.84 (br, H_n, (CH₂=C*H*)_n) 6.56 (4 × N*H*), 7.07-7.10 (AA'XX' system, 8H, 8 × ArH), 7.26-7.39 (AA'XX' system, 8H, 8 × ArH); ¹³C NMR (62.5 MHz, CDCl₃) δ 24.95(CH₃), 27.38 (CH₂)_n, 30.13 (CH₂)_n, 31.96 (CH₂)_n, 38.19 (CH)_n, 40.52 (CH₃), 43.48 (ArCH₂Ar), 54.17 (CH₂), 56.85 (CH₂), 59.66 (OCH₂), 113.83-115.01(C*H*₂=CH)_n, 118.85 (ArC), 127.63 *cis*(CH= C*H*)_n, 130.11 *trans*(CH= C*H*)_n, 131.68 *cis*(CH= CH)_n, 135.99-136.21 (ArC), 142.67-143.65 (CH₂= C*H*)_n, 154 (C=O).

Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2010

Synthesis of 4-((4'- 2-[*bis*butyl-amino]-ethyl) ureidobenzyl)-phenyl-aminocarbonyl terminated poly(butadiene) 18

The synthesis has been carried using the direct addition approach used to synthesise 4,4'-methylene*bis*(phenyl-carbamic acid 2-[N,N *di*butyl)-amino]-ethyl ester) **2** (see section 2.2). 4-((4'-2-[*bis*butyl-amino]-ethyl) ureidobenzyl)-phenyl-amino-carbonyl terminated poly(butadiene) diol **18** was produced as a yellow viscous sticky rubbery solid in 84.8% yield (7.77 g) from poly(butadiene) diol end capped with 4,4'-methylenebis(phenylisocyanate) (8.05 g, 3.22 mmol) and N,N'-*di*butylethane-1,2-diamine (1.11 g, 6.44 mmol).

IR (CDCl₃, KBr) v_{max}/cm^{-1} ; 3317, 3072, 2957, 2916, 2845, 1703, 1639, 1599, 1539, 1415. ¹H NMR (250MHz, CDCl₃) δ 0.87-0.90 (m, 12H, 4 × CH₃), 1.21-1.38 (br, 2H_n, (CH₂)_n), 1.41-1.44 (br m, 16H_n, (8 × CH₂), 2.02 (br m, 9H_n, (4 × *cis*(CH=CH*CH*₂)_n + 4 × *trans* (CH=CH*CH*₂)_n + (CH=CH*CH*)_n), 2.60-2.64 (br, 8H, 4 × *CH*₂N), 2.68-2.72 (t, 4H, 2 × NCH₂, J = 5.0), 3.29-3.32 (br, 4H, 2 × CH₂N), 3.88-3.86 (br, 4H, 2 × ArCH₂Ar), 4.06-4.16 (m, 4H, (2 × OCH₂), 4.96 (br, 2H_n, (2 × CH= *CH*₂)_n), 5.33-5.36 (br, 2H_n, (*cis* CH= CH)_n), 5.46-5.59 (br, 2H_n, (*trans* CH= CH)_n), 5.67-5.83 (br, H_n, (CH₂=*CH*)_n) 6.58-6.64 (4 × NH), 7.04-7.10 (AA'XX' system, 8H, 8 × ArH), 7.22-7.26 (AA'XX' system, 8H, 8 × ArH); ¹³C NMR (62.5 MHz, CDCl₃) δ 13.9 (CH₃), 20.2 (CH₂), 25 (CH₃), 27.4 (CH₂)_n, 30.2 (CH₂)_n, 32.8 (CH₂)_n, 37.5 (CH)_n, 39.7 (CH₂), 41.7 (CH₃), 43.5 (ArCH₂Ar), 53.9 (CH₂), 63.6 (OCH), 113.8-115.1 (*CH*₂=CH)_n, 118.9-120.7 (ArC), 127.7 *cis*(CH=CH)_n, 157.3 (C=O).

Synthesis of 4-((4'- carbamic acid 2-[*bis*butyl-amino]-ethyl ester) benzyl)-phenylamino-carbonyl terminated poly(butadiene) diol 15

This analogue has been synthesised via the direct addition approach used to produce 4,4'-methylene*bis*(phenyl-carbamic acid 2-[N,N *di*butyl)-amino]-ethyl ester) **2** (see section 2.2). 4-((4'-Carbamic acid 2-[*bis*butyl-amino]-ethyl ester) benzyl)-phenyl-amino-carbonyl terminated poly(butadiene) diol **15** was produced as a yellow viscous sticky solid in 84.8% yield (7.77 g) from poly(butadiene) diol end capped with 4,4'-methylenebis(phenylisocyanate) (8.05 g, 3.22 mmol) and 2-(*di*butylamino)ethanol (1.11 g, 6.44 mmol).

IR (CDCl₃, KBr) v_{max}/cm^{-1} ; 3400, 3322, 3072, 2969, 2915, 2843, 1707, 1639, 1599, 1533, 1436, 1415. ¹H NMR (250 MHz, CDCl₃) δ 0.93-0.96 (m, 12H, 4 × CH₃), 1.22-1.43 (br, 2H_n, (CH₂)_n), 1.44-1.48 (br m, 8H_n, (4 × CH₂), 2.02 (br m, 9H_n, (4 × *cis*(CH=CHCH₂)_n + 4 × *trans* (CH=CHCH₂)_n + (CH=CHCH)_n), 2.44-2.50 (t, 8H, CH₂N, *J*=7.5), 2.69-2.74 (t, 4H, 2 × NCH₂, *J* = 5.0), 3.88 (s, 4H, 2 × ArCH₂Ar), 4.06-4.11 (m, 4H, (2 × OCH₂), 4.17-4.22 (m 4H, (2 × CH₂O), 4.96 (br, 2H_n, (2 × CH=CH₂)_n), 5.33-5.36 (br, 2H_n, (*cis* CH= CH)_n), 5.46-5.56 (br, 2H_n, (*trans* CH=CH)_n), 5.77-5.81 (br, H_n, (CH₂=CH)_n) 6.56-6.67 (4 × NH), 7.07-7.11 (AA'XX' system, 8H, 8 × ArH), 7.22-7.29 (AA'XX' system, 8H, 8 × ArH); ¹³C NMR (62.5 MHz, CDCl₃) δ 14.12 (CH₃), 20.67 (CH₂) 24.99 (CH₃), 27.56 (CH₂)_n, 31.41 (CH₂)_n, 32.77 (CH₂)_n, 38.25 (CH)_n, 40.16 (CH₃), 43.48 (ArCH₂Ar), 52.66 (CH₂), 54.45 (CH₂), 63.30 (CH₂), 67.99 (OCH), 113.83-114.94 (CH₂=CH)_n, 118.93 (ArC), 127.66 *cis*(CH= CH)_n, 130.03 *trans*(CH= CH)_n, 153.67 (C=O).

Figure S1 FT–IR spectra on cooling $(120 - 25 \text{ }^{\circ}\text{C})$ the butyl terminated *bis*urethane system **10**, **8** and **6** a) NH stretching region, b) Urethane stretching region.

Figure S2 FT–IR spectra on cooling $(120 - 25 \text{ }^{\circ}\text{C})$ the butyl terminated *bis*urethane system 9, 4 and 2 a) NH stretching region, b) Urethane stretching region.

Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2010

Figure S3 Summary of the extent of hydrogen bonding versus temperature a) Variation of the hydrogen bonding on the urethane region and the area of the NH/OH region b) Variation of the NH absorption bands. Red symbols denote the extent of hydrogen bonding, blue symbols denote the position of the maximum absorbance band of the NH vibration.