Supporting Documents

Table S-1 lists calculated interfacial surface tension ($\gamma_{(p-MMA/nBA//p-nBA/PFS)}$ of

p-MMA/nBA/p-nBa/PFS particles as a function of nanoparticle composition.

Figure S-1 illustrates ¹³C-NMR spectrum of specimen P60/40. The following NMR shifts were used to determine the monomer ratio after copolymerization: <u>C</u>H₃- at δ =18 ppm (g') of p-nBA and <u>C</u>H₃- at δ =51 ppm (d) of p-MMA. The resulting molar ratios were then converted to the w/w ratios. An experimental error is ~ 5w/w %.

Figure S-2,A shows AFM images on SiO₂ substrate and PTFE substrates. Colloidal nanoparticles of P100/0-S₂ (Figure S-2A, A₁, A₁', A₂, A₂') on SiO₂ show a softer phase p-nBA/PFS on the top of p-MMA. However, on PTFE, Figure S-2A, A₂-A₂', the low T_g p-nBA/PFS phase is coalesced. As seen a distinct p-nBA/PFS phase (light regions) is imbedded into a softer p-nBA/MMA matrix shown as dark regions for monolayer of P50/50-S₂ particles. . On a PTFE substrate, due to a higher degree of coalescence near the film-air (F-A) interface particle shapes are hard to differentiate. In terms of the core-shell particles P0/100-S₂ the resulting film morphologies are different. On the SiO₂ substrate Figure S-2A, C1 and C1', the phase image shows that the harder p-nBA/PFS phase is surrounded by a soft p-nBA phase, whereas on PTFE Figure S-2A, C₂ and C₂', substrate a homogenous morphology film, due to coalesced p-nBA phase is observed. The reported observations are supported by the recorded GATR spectra illustrated in Figure S-2B. For P0/100-S2 particles spectra S-2B, A, show a high intensity of 1500 and 1520 cm⁻¹ bands corresponding to PFS (C-F) vibrations at the F-A interface on SiO₂ substrates. However, on PTFE the low T_g p-nBA/PFS phase is coalesced.

strong decrease in the characteristic bands (1500 and 1520 cm⁻¹) of PFS is observed. Accordingly a higher band intensity of 1500 and 1520 cm⁻¹ bands of PFS is observed in Figure S-2B, spectrum B, where as the 1165 and 1145 cm⁻¹ bands attributed to C-O-C stretching vibrations of p-nBA and p-MMA decreased for colloidal particles of P50/50-S2 on SiO₂ substrate. On a PTFE substrate increasing intensities of the 2965, 2935, and 2875cm⁻¹ bands attributable to CH₂ stretching vibrations 1165 and 1145 cm⁻¹ bands attributed to C-O-C stretching vibrations of p-nBA and p-MMA is detected. Colloidal particles P100/0 which show no significant PFS bands at FA interface on the PTFE substrate spectra Figure 2 B,C,. For a monolayer on a SiO₂ substrate both p-nBA/PFS and p-nBA are detected.

Table S-1: Composition of core and 2-phase particles and their interfacial surface tension $\gamma_{(p-MMA/nBA//p-nBA/PFS)}$

Core	Shell Particle	2–Phase Particles	γ(p-MMA/nBA//p-nBA/PFS)
Particle Description	Description		[mN/m]
MMA/nBA ratio	PFA/nBA		
0/100	50/50	P0/100-S ₂	1.7
20/80	50/50	P20/80-S ₂	3.4
40/60	50/50	P40/60-S ₂	6.7
45/55	50/50	P45/55-S ₂	7.6
50/50	50/50	P50/50-S ₂	8.7
55/45	50/50	P55/45-S ₂	9.8
60/40	50/50	P60/40-S ₂	10.6
80/20	50/50	P80/20-S ₂	12.8
100/0	50/50	P100/0-S ₂	15.2

Figure S-1: ¹³C-NMRspectra of specimen P60/40.

Figure S-2A: AFM phase images and height images of P100/0-S₂ (A₁, A₁',A₂,A₂'), P50/50-S₂ (B₁,B₁',B₂,B₂') and P0/100-S₂ (C₁,C₁',C₂.C₂') particles coalesced on SiO₂ and PTFE substrates. GATR-FTIR spectra recorded from the F-A interface of P100/0-S₂ (A), P50/50-S₂ (B) and P0/100-S₂ (C) in the 3050–2 850 cm⁻¹ (1) and 1 550–1100 cm⁻¹ (2) region of of P100/0-S₂ (A), P50/50-S₂ (B) and P0/100-S₂ (C) coalesced on Silica (trace a) and PTFE (trace b) substrates; and IR spectrum of c) PFS, d) nBA, and e) MMA monomers for reference purposes.