Electronic Supplementary Information

Instrumentation

TEM analysis was conducted using a Jeol 120EX TEM, TGA measurement was conducted using a SDT Q600 Simultaneous TGA/DSC, TA instruments, with a heating rate of 10 °C/min under Air. Powder XRD was measured using a Bruker D8 diffractometer. Hydrodynamic diameters were determined by DLS measurement using a Malvern Zetasizer Nano-ZS.

Experimental

*Preparation of Sephadex-Co*₃*O*₄: 3g of Sephadex G-50 (fine) beads were hydrated with 60 mL of water for use as a biopolymer substrate. 2.0 g of Co(NO₃).6H₂O was added with stirring. After standing for 5 min ammonia solution was added until the stirred mixture reached pH11. The mixture was then microwaved until the mixture reached 80°C and then flask cooled in ice water RT to with neutralization to pH7 with dilute HNO₃. The flask was sonicated for 1min and the contents were then filtered using a 90 micron mesh with thorough washing with DI water and finally rinsed with ethanol. The retained material dried to give free flowing powders of brown coloured Sephadex beads.

Sephadex- Fe_3O_4 was prepared as described above with modifications. 0.27g of FeCl₂.4H₂O and 1.42g of FeCl₃.6H₂O were added and 30ml of 1M NaOH added with microwaving followed by neutralization to pH 7 with dilute HCl. The retained material consisted purely of dark orange-brown coloured Sephadex beads.

*Sephadex-Mn*₃ O_4 was prepared as with the Sephadex-Co₃O₄ with modifications. 1.73g of Mn(NO₃)₂.4H₂O were used followed by ammonia treatment and microwaving followed by neutralization to pH 8.5 with dilute HNO₃. The retained material consisted purely of light brown coloured Sephadex beads.

Dextranase treatment of Sephadex-metal oxides: 0.5 g of dried Sephadex-metal oxide was suspended in 30ml of deionized water and warmed in a water bath to 34°C, the pH of the solution was adjusted to 5.8 with dilute acetic acid. 250 units of freeze dried

Dextranase Penicillium sp. $(1,6-\alpha$ -D-glucan 6-glucanohydrolase, Sigma-Aldrich) was then added and the mixture held at 34°C with gentle stirring for 36 hours. After this time the mixture was centrifuged and the supernatant removed, a brown sedimented pellet was obtained that was washed and centrifuged several times in de-ionized water. The recovered nanoparticle coatings obtained were then used for subsequent TEM and XRD analysis.

Photocatalytic water oxidations: Previously reported methodologies were followed with modifications. ^{4,5,10} Briefly photochemical water oxidation experiments were conducted in a 50 mL conical flask with a fitted rubber septum. A known weight of dry dextranmetal oxide, metal oxide coated dried Sephadex 'organic' support or commercial Co₃O₄ nanopowder was taken such that 9mg of the metal oxide component was present in each case, this was suspended in 40ml of Ar degassed DI water (O₂ probe measurements showed that dissolved O₂ was present at ~1ppm). 390 mg Na₂SO₄, 130 mg Na₂S₂O₈, 45 mg [Ru(bpy)₃]Cl₂·6H₂O and 166mg Na₂SiF₆of were added with stirring to the covered reaction flask. NaHCO₃ was added to the stirred reaction mixture to reach a constant pH of 5.8. The reaction mixture was then briefly further degassed with Ar. Following this the flask was uncovered and exposed to a 1W blue LED lamp (λ_{max} 470nm) at a distance of 10cm. Evolved gas was collected from the flask by water displacement from an attached filled vessel and the volume evolved measured for 60min.

Analysis of gas evolved: Carbon dioxide content in the gas evolved from the sample systems was determined by direct collection and of the gas into vessels entirely filled with filtered saturated lime water (Ca(OH)₂ content of 1.5mgCa(OH)₂/ml), the solution was displaced during collection such that air was excluded. The sealed gas and lime water vessels were shaken and left for 24 hours to allow any CO₂ content to fully precipitate as CaCO₃. Quantitative analysis of the precipitate was conducted to determine the proportion of CO₂ present in the evolved gas.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2011

The presence of O_2 in the evolved gas was determined, firstly by successful use of the traditional glowing splint test on gas collected after lime water removal of any CO_2 contaminant. A methylene blue dye solution was then also used as confirmation of the presence of a high level of O_2 in the evolved gases.²¹

Electronic Supporting Information Fig. S1. Image of Sephadex powders as dried beads coated with nanoparticles of (a) Co_3O_4 ; (b) Fe_3O_4 ; (c) Mn_3O_4 .

Sample (Mr)	Wt% of metal oxide in prepared polymer/metal oxide
Dex(6k)- Co ₃ O ₄	2.95
Dex(70k)- Co ₃ O ₄	2.84
Dex(500k)- Co ₃ O ₄	2.1
Dex(6k)- Fe ₃ O ₄	20
Dex(70k)- Fe ₃ O ₄	12.6
CMdex(~15k) -Co ₃ O ₄	7.05
Sephadex- Co ₃ O ₄	2.1
Sephadex- Fe ₃ O ₄	26.7
Sephadex- Mn₃O₄	1

Electronic Supporting Information Fig. S2. TGA data for prepared biopolymer stabilized metal oxides and nanoparticle coated Sephadex beads showing different wt% of Co₃O₄, Fe₃O₄ or Mn₃O₄ present in the dried dextran/ metal oxide. A weight of sample for the water oxidation reactions was used such that 9mg of the metal oxide was present.

Electronic Supporting Information Fig. S3. Uv-vis absorption spectrum of a 70k dextran-Co₃O₄ photocatalytic water oxidation reaction mixture (pH 5.8), showing the absorption maximum of the $[Ru(bpy)]_3^{3+}$ photosensitizer at 452nm.