Supplementary Information:

Facile immobilization of enzymes on electrospun poly(styrene-altmaleic anhydride) nano fibres.

William J. Cloete, Craig Adriaanse, Pieter Swart, Bert Klumperman*

Synthesis of Poly(St-alt-MA)

An alternating copolymer of styrene (extracted with *KOH*, dried over $MgSO_4$, distilled in vacuo) and maleic anhydride (Merck 99%) was synthesized by conventional free radical chemistry in a 1:1 molar ratio styrene : maleic anhydride. *15 g Styrene* monomer was dissolved in *200 mL MEK* (SASOL Chemicals, 99.75%) along with *14.12 g maleic anhydride* and *0.1182 g AIBN* (Riedel-DeHaën ; SIGMA-ALDRICH; Recrystallized from *CH*₃*OH*). The reaction mixture was degassed with N_2 (gas) for *30 min* and reacted over night under reflux at 60 °C. The polymer was precipitated in *500 mL* of *iso-propanol* (SASOL Chemicals, *85%*). The polymer was dried in a vacuum oven at room temp, overnight to remove non reacted monomer and solvent. The total amount of polymer recovered was *27.03 g (%Yield = 92.80%*). ¹H-NMR (Varian ^{Unity} Inova, 400MHz) in *d6-DMSO* was used to verify if the copolymer was in fact synthesized and size exclusion chromatography (*SEC*) was done to establish the molar mass.

Fig 1: ¹H-NMR of poly(Sty-alt-MAnh) δ (d6-DMSO) [ppm]: J=6.5-7.5 Hz, benzyl unit; J=3-3.5,2H, anhydride unit; J=2.1, (CH₂-CH(C₆H5))

Fig 2: SEC analysis done in THF (M_w =252 887Da, PDI= 4.6) Electrospinning

The polymer was dissolved in a 1:2 *DMF:acetone* solution (15 wt%). The collector (aluminium foil) was set up 15 cm below needle tip with an offset of 4 cm to the centre of the collector. The polymer solution was fed through a Teflon tube (Hamilton, P/N 8651/00) from a glass syringe mounted in a syringe pump (Harvard, Model 33 Twin Syringe Pump) to the needle (Hamilton, 26 Gauge). The needle was positioned at an angle of ca. 30°. A flow rate of 0.01 mL/min and the high voltage supply (Voltage supply: 25 kV, 400 micro Amps, 10 Watt, high output voltage supply) set at 15 kV appeared to be the optimum parameters for spinning. The following table consist of all the parameters used in the different electrospinning experiments.

Experiment:	WC013				
Sample:		#1	#2	#3	#4
Parameters:	Volts	15kV	15kV	15kV	15kV
	Distance	15cm	15cm	15cm	15cm
	Flow Rate	0.01mL/min	0.02mL/min	0.03mL/min	0.04mL/min
	Offset	4cm	4cm	4cm	4cm
	Concentration	15wt% SMA	15wt% SMA	15wt% SMA	15wt% SMA

Table 1: Same experimental setup but different flow rates for electrospinning

Experiment:	WC014			
Sample:		#1	#2	#3
Parameters:	Volts	10kV	15kV	20kV
	Distance	15cm	15cm	15cm
	Flow Rate	0.01mL/min	0.01mL/min	0.01mL/min
	Offset	4cm	4cm	4cm
	Concentration	15wt% SMA	15wt %SMA	15wt% SMA

Table 2: Same experimental setup but electrospinning done at different voltages

SEM analysis was done after vacuum gold coating of some of the resulting fibres at *500X* and *3000X* magnification respectively.

The following images were obtained from the SEM analysis:

WC013_Sample1

Fig 3: Poly(Sty-alt-MAh) fibres Zone Magnification X500 and X3000

WC013_Sample2

Fig 4: Poly(Sty-alt-MAh) fibres Zone Magnification X500 and X3000

WC014_Sample3

Fig 5: Poly(Sty-alt-MAh) fibres Zone Magnification X500 and X3000

WC013_Sample4

Fig 6: *Poly(Sty-alt-MAh)* fibres Zone Magnification *X500* and *X3000* From the images it is clear that fairly uniform fibres were obtained and that different spinning conditions, all resulted in fibre diameters *ca*. 300 nm.

Immobilization of Horseradish Peroxidase (HRP) on poly(Sty-alt-MAnh)

A 4 mg/mL solution was made up by dissolving *HRP* in *PBS* buffer (8 g NaCl; 0.2 g KCl; 11.5 g Na₂HPO₄; 0.2 g KH₂PO₄; pH 7.4) and placed along with the electro spun fibres in a petri dish and incubated for one hour on a Belly Dancer laboratory shaker. The fibres were subsequently washed three times for 10min at a time with PBS-Tween buffer solution (*PBS*, 0.01% Tween 20). The substrate solution *ABTS/H₂O₂* (6 mg *ABTS* (2, 2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) and 37% H_2O_2 , 6 µL in 12 mL citrate buffer 0.1 M, pH 5) was then introduced to the fibres and a colour change was observed. The colour change was noted relative to what happens when the *ABTS/H₂O₂* is introduced to fibres where no *HRP* was immobilized and incubated for the same time period in the *PBS* buffer.

Fig 7: Colour change (dark blue) observed relative to a control with no immobilized enzyme and the two substrate solutions used in the left picture after half an hour.

Immobilization of Horseradish peroxidise (*HRP*) and Glucose oxidase (*GOX*) on *poly(Sty-alt-MAnh*)

The same approach was taken as above for the immobilization of *HRP*. The *GOX* was immobilized by incubating the fibres in a petri dish with a 10 mg/mL solution of *GOX-PBS* (*PBS pH 7.55*). The membranes was washed 3 times for 10 min at a time with *PBS-Tween* (*PBS, 0.01% Tween 20*) The substrate solution of final concentration $100 \mu L/mL$ Ampliflu Red/PBS was made up of two solutions, 1 mg/mL Dextrose (D-glucose)/PBS and 10 mmol/L Ampliflu Red/PBS. The substrate solution was introduced to the membranes and the colour change observed relative to a control. Two experiments were done, one where both *HRP* and *GOX* were immobilized on one membrane and another where *HRP* and *GOX* were immobilized on separate membranes. In the experiment where the enzymes were immobilized on separate membranes the substrate solution (Ampliflu Red/PBS/Dextrose) was introduced to the *GOX* membrane first; the solution was then transferred from there to the membrane with *HRP* and the subsequent colour change was observed relative to a control.

Fig 8: Colour change (pink) observed relative to a control with no immobilized enzyme and the two substrate solutions after half and hour.

Binding efficiency of HRP

The binding efficacy of *HRP*(*BBI Enzymes, Sample for Stellenbosch University*) to the *Poly(Sty-alt-MAh)* fibres was determined with the use of antibodies. Primary antibodies (*Anti-HRP*) were raised in rabbits with an immunization schedule of *56 days*. The *HRP* was first incubated as previously discussed with subsequent wash steps. Then the fibres were incubated in casein buffer (*10 mM TRIS, pH 7.6, 0.15 M NaCl, 0.5 % Casein, 0.02 % Thiomersal*) for *20 minutes* in order to block all non specific sites where the antibodies may bind. For the controls only *PBS* was added. After *60 minutes* the *HRP* solution was discarded/decanted and the fibres were washed four times, four minutes each, with PBS buffer containing *0.1% Tween-20 (PBS-Tween)*. *Anti-HRP* antibodies (*1:10 000 in casein buffer*) was incubated with these fibres at *37 ° C* for *2 hours* followed by wash steps as mentioned previously.

Fig 9: Colour change observed after incubation of primary and secondary *Anti-HRP* antibodies and the introduction of the *BCIP-T/NBT* substrate solution.

A secondary antibody (*Sigma, anti-rabbit IgG, catalogue number: A3687*), conjugated to alkaline phosphotase (1: 20 000), was then added to the fibres and incubated at 37 ° C for 2 hours, also followed by four washes with *PBS-Tween* as before, where after a *5-bromo-4-chloro-3-indolyl phosphate p-toluidine salt /nitro blue tetrazolium (BCIP-T/NBT)* substrate, *33 ml* of *BCIP-T* (*50 mg/ml in DMF*) and *44 ml* of *NBT* (*75 mg/ml in 70% DMF*) in *10 ml* of alkaline phosphotase buffer (*100 mM TRIS, pH 9.5, 100 mM NaCl, 10 mM MgCl*₂), was added to the *poly(Sty-alt-Mah)* fibres and incubated at room temperature. The colour change was observed relative to the controls.

BCIP-T (Fermentas Life Sciences [Fermentas], Catalogue number R0821) NBT (Fermentas Life Sciences [Fermentas], Catalogue number R0841)