No Matter the Order of Monomer Addition For the Synthesis of Well-Defined Block Copolymers by Sequential Group Transfer Polymerization Using *N*-Heterocyclic Carbenes as Catalysts

Jean Raynaud,^{a,b} Na Liu,^{a,b} Maréva Fèvre,^{a,b} Yves Gnanou^{a,b} and Daniel Taton^{*a,b}

^a Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, 16 avenue Pey-Berland, F-33607 Pessac cedex, France; E-mail: <u>taton@enscbp.fr</u>

^b Université de Bordeaux, Laboratoire de Chimie des Polymères Organiques, IPB-ENSCBP, F-33607 Pessac cedex, France

SUPPLEMENTARY INFORMATION

Figure 1. Two NHCs synthesized from the "imidazol-2-ylidene" family

1,3-diisopropyl imidazol-2-ylidene (1). A 150-mL roundbottom flask equipped with a stir bar was charged with 2.0 g (10.6 mmol) of 1,3-di*iso*propyl imidazolium chloride, solid potassium *tert*-butoxide (90 mg, 0.8 mmol) and sodium hydride (600 mg, corresponding to 15 mmol of pure NaH) as a 60%wt dispersion in silicon oil. The flask was kept under

a 60% wt dispersion in silicon oil. The flask was kept under $_{MW: 188,70}$ $_{MW: 152,24}$ vacuum. Then, 20 mL of freshly distilled THF were added dropwise to the suspension at room temperature. A dark gray solution was obtained immediately. The mixture was stirred for 5 h, then filtrated under vacuum (fritted glass filter, porosity G5) and volatiles were removed under vacuum. The obtained pale viscous liquid was subsequently distilled under vacuum to provide NHC **1** as a clear liquid (1.3 g, 81% yield): ¹H NMR (THF-d₈) δ 1.45 (s, C<u>H</u>₃, 12 H), 4.45 (m, C<u>H</u>(CH₃)₂, 2 H), 6.95 (s, NC<u>H</u>C, 2 H); ¹³C NMR δ 24.8 (s, <u>C</u>H₃), 52.9 (s, <u>C</u>H-(CH₃)₂), 116.5 (s, N<u>C</u>HC), 212.9 (s, N<u>C</u>N).

Figure 3. NMR ¹H (THF-d₈) of 1,3 di*iso*propyl imidazol-2-ylidene (NHC 1)

1,3-ditert-butyl imidazol-2-ylidene (2). A 150-mL roundbottom flask equipped with a stir bar was charged with 2.0 g (9.2 mmol) of 1,3-di*tert*-butyl imidazolium chloride, and 20 mL of freshly distilled THF. The dispersion was stirred for 0.5h. Then, 7 mL of a 2M solution of *n*Bu-Li in cyclohexane (14 mmol) was added dropwise at -78°C. A turbid solution

was obtained immediately. The mixture was allowed to warm up and stirred for 2 h, then filtrated under vacuum (fritted glass filter, porosity G5) and volatiles were removed under vacuum. The obtained pale solid was subsequently sublimed under vacuum to provide NHC **2** as a white crystalline solid (1.3 g, 78% yield): ¹H NMR (THF-d₈) δ 1.6 (s, C<u>H₃</u>, 18 H), 7.15 (s, NC<u>H</u>C, 2 H); ¹³C NMR δ 31.8 (s, -<u>C</u>H₃), 56.3 (s, <u>C</u>(CH₃)₃), 115.7 (s, N<u>C</u>HC), 213.4 (s, N<u>C</u>N).

Figure 4. Crystallization of the NHC 2 after the fritted filter

Figure 6. NMR ¹H (THF-d₈) of 1,3 di*tert*-butyl imidazol-2-ylidene (NHC 2)

Exp.	Monomer	[M] (mmol)	[NHC1] (µmol)	[MTS] (mmol)	M _n th. ^ª (g/mol)	M₁ exp. ^b (g/mol)	NMR ^c Mn ^{exp} (g/mol)	Time (h)	D ^d (M _w /M _n)
1 ^f	tBA	27	- 6	0.25	14200	14100*(THF)	14800	4	1.22
	DMA	19			21800	23700*(THF)	21300	48	1.2
2	tBA	10	- 6	0.25	5300	5800*(THF)	5500	4	1.19
	MMA	12			10300	11500*(THF)	11900	48	1.27
3	nBA	10	- 5 NHC 2	0.25	5300	5200*(THF)	5400	3	1.35
	MMA	12			10300	9800*(THF)	10500	48	1.4
4 ^f	tBA	20	- 2.5	0.1	26000	28500*(THF)	30000	5	1.24
	DMAEMA	9			40000	36000*(THF)	36700	96	1.23
5 ^f	MMA	25	- 12.5	0.25	10000	9300*(THF)	9300**	3	1.1
	DMA	29			19300	23000(THF)	16900	96	1.09
6	DMA	19	- 12.5	0.25	7600	79400(DMF)	6600	24	1.31
	DMAEMA	27			24400	126000(DMF)	17600	216	1.4
7	DMA	39	- 12.5	0.25	15400	20600(DMF)	12400	24	1.15
	MMA	38			30600	87500(DMF)	23900	120	1.3
8	DMAEMA	12	- 12.5	0.25	7500	8800(DMF)	6300	18	1.16
	DMA	42			24000	31000(DMF)	13000	216	1.29
9	MMA	35	- 12.5	0.25	13800	11200*(THF)	11200**	3	1.07
	DMAEMA	18			25000	26000(DMF)	22000	72	1.1
10	MMA	37	- 25	0.5	7500	6400*(THF)	6400**	3	1.12
	DMAEA	20			13200	8300(DMF)	11000	96	1.3
11	DMAEMA	9	- 12.5	0.25	5800	2000(DMF)	3400	24	1.24
	DMAEA	10			11500	6200(DMF)	4800	72	1.21
12 ^f	MMA	100	- 12.5	0.25	40000	43000(THF)	43000**	24	1.08
	MAN	100			67000	71000(THF)	-	72	1.18
13	MMA	7.5	 11.6	0.23	3300	3000	3200	24	1.16
	tBA	5.5			4500	4100	4600	72	1.12
	DMA	4.8			5500	5200	5300	168	1.09

Table 1 Characteristics of block copolymers obtained via sequential group transfer polymerization in THF using NHCs as catalyst s and MTS as initiator

^{*a*} M_n^{theo} are obtained by calculation, 2nd value being systematically the sum of both blocks. ^{*b*} M_n^{exp} are determined by SEC in DMF (PS calibration), or in THF (*) (PMMA calibration) for PMMA blocks. ^{*c*} ¹H NMR has been used to determine block molar masses when chain ends (MTS remains) were identifiable. ** M_n^{exp} of PMMA's obtained by SEC in THF (PMMA calibration) are re-used for the ¹H NMR calculation of both block molar masses. ^{*d*} SEC analyses in THF or in DMF, according the nature of the polymer have been used. ^{*f*} The first block (PMMA or P*t*BA) has voluntarily been chosen long enough to allow the block copolymerization in THF, without need of DMF addition during the overall synthesis.

Figure 7. NMR ¹H (CDCl₃) to determine the monomer conversion during GTP of *t*BA catalyzed by NHC **1** or **2** in THF

Figure 8. NMR ¹H (CDCI₃) to determine the monomer conversion during GTP of *t*BA catalyzed by NHC **1** or **2** in toluene

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2011

Figure 9. NMR ¹H (CDCl₃) to determine the monomer conversion during GTP of MMA catalyzed by NHC 1 or 2 in THF

Figure 10. NMR ¹H (CDCI₃) to determine the monomer conversion during GTP of DMAEA catalyzed by NHC 1 or 2 in THF

Figure 11. NMR ¹H (CDCI₃) to determine the monomer conversion during GTP of DMAEMA catalyzed by NHC 1 or 2 in THF

Figure 12. NMR ¹H (CDCl₃) to determine the monomer conversion during GTP of DMA catalyzed by NHC **1** or **2** in THF

Figure 13. NMR¹H (CDCI₃) of PDMAEMA, determination of its molar mass (equation)

Figure 14. NMR¹H (CDCl₃) of PDMAEA, determination of its molar mass (equation)

Figure 15. NMR ¹H (CDCl₃) of P*t*BA-*b*-PDMA, determination of the molar mass of each block (equations)

Figure 16. NMR ¹H (CDCl₃) of PMMA-*b*-PDMA, determination of the molar mass of the PDMA block (equation)

Figure 17. NMR ¹H (CDCl₃) of PMADAME-*b*-PDMA, determination of the molar mass of each block (equations)

Figure 18. NMR ¹H (CDCl₃) of PMMA-*b*-PMADAME, determination of the molar mass of the PMADAME block (equation)

Figure 19. NMR ¹H (CDCl₃) of PMMA-*b*-PDMAEA, determination of the molar mass of the PDMAEA block (equation)

Figure 20. NMR ¹H (CDCl₃) of PDMAEMA-*b*-PDMAEA, determination of the molar mass of each block (equations)

Figure 21. NMR ¹H (CDCl₃) of PMMA-*b*-P*t*BA-*b*-PDMA, determination of the molar mass of each block (equations)

Figure 22. SEC trace (RI detector) of the corresponding triblock PMMA-b-PtBA-b-PDMA