Supporting Information for "Nitroxide mediated controlled synthesis of glycidyl methacrylate-rich copolymers enabled by SG1-based alkoxyamines bearing succinimidyl ester groups"

Ali Moayeri^a, Benoit Lessard^a and Milan Maric^{*a} Department of Chemical Engineering, McGill University 3610 University Street Montreal, QC, H3A 2B2

In Figure 3, the apparent rate constants $(k_p[\mathbf{P}\cdot])$ where k_p is the propagation rate constant and $[\mathbf{P}\cdot]$ is the concentration of propagating macroradicals) determined experimentally from the $\ln[1/(1-X)]$ versus time plots (X = monomer conversion) were plotted as a function of initial monomer feed composition ($f_{GMA} = 1 - f_{ST}$) for glycidyl methacrylate (GMA)/styrene (ST) mixtures. The apparent rate constants dramatically increase at high GMA feed compositions and an expression was derived for $k_p[\mathbf{P}\cdot]$ in an attempt to predict the experimental observations. Below is how a predictive expression for $k_p[\mathbf{P}\cdot]$ was derived and compared to the experimental data.

First, the k_p is actually an average k_p for the mixture and is denoted herein as $\langle k_p \rangle$. Expressions for $\langle k_p \rangle$ have been derived using terminal or penultimate kinetic copolymerization models¹. Here, we use the penultimate model as such a model can better describe most copolymerization kinetic systems, even though the copolymer composition can be predicted well by a terminal model¹. For an implicit penultimate model, $\langle k_p \rangle$ is given by:

$$\left\langle k_p \right\rangle = \frac{r_{ST} f_{ST}^2 + 2 f_{ST} f_{GMA} + r_{GMA} f_{GMA}^2}{r_{ST} \frac{f_{ST}}{k_{p,ST}} + r_{GMA} \frac{f_{GMA}}{k_{p,GMA}}}$$
[1]

where r_{ST} and r_{GMA} are the monomer reactivity ratios for ST and GMA, respectively, f_{ST} and f_{GMA} ($f_{GMA} = 1 - f_{ST}$) are the feed compositions of ST and GMA, respectively. Also, $\overline{k_{p,ST}}$ and $\overline{k_{p,GMA}}$ are given by:

$$\overline{k_{p,ST}} = k_{p,ST} \frac{r_{ST} f_{ST} + f_{GMA}}{r_{ST} f_{ST} + \frac{f_{GMA}}{s_{ST}}}$$
[2a]

$$\overline{k_{p,GMA}} = k_{p,GMA} \frac{r_{GMA} f_{GMA} + f_{ST}}{r_{GMA} f_{GMA} + \frac{f_{ST}}{s_{GMA}}}$$
[2b]

where $k_{p,ST}$ and $k_{p,GMA}$ are the homopolymerization propagation rate constants of ST and GMA, respectively and s_{ST} and s_{GMA} are the radical reactivity ratios. All of the monomer and radical reactivity ratios were taken from Wang and Hutchinson² while the propagation rate constants were taken from the appropriate literature^{3,4}. All of the parameters used for the estimation of k_p [P·] are summarized in Table S1.

Next, we need to evaluate $[P \cdot]$ for a nitroxide mediated controlled radical polymerization. For this, we use the expression derived by Fischer⁵. It assumes that irreversible termination is not omitted from the polymerization mechanism.

$$\left[P\cdot\right] = \left(\frac{\langle K\rangle[I]_0}{3\langle k_t\rangle}\right)^{1/3} t^{-1/3}$$
[3]

In Equation [3] above, $\langle K \rangle$ is the average equilibrium constant, $[I]_0$ is the initial concentration of nitroxide, $\langle k_t \rangle$ is the average termination rate constant and *t* is the time. For the implicit penultimate model, Charleux and co-workers derived the following expression for $\langle K \rangle^6$.

$$\left\langle K \right\rangle = \frac{\frac{r_{ST}f_{ST}}{k_{p,ST}} + \frac{r_{GMA}f_{GMA}}{k_{p,GMA}}}{\frac{r_{ST}f_{ST}}{k_{p,ST}K_{ST}} + \frac{r_{GMA}f_{GMA}}{k_{p,GMA}K_{GMA}}}$$
[4]

Note that the individual equilibrium constant for ST is available from experimental data⁷ but that of GMA is not available and was estimated by the available data from the related methyl methacrylate (MMA)⁸. Finally, $\langle k_i \rangle$ was taken for the penultimate model using the following expression⁹:

$$\langle k_t \rangle = \left(p_{ST} k_{t,ST}^{1/2} + p_{GMA} k_{t,GMA}^{1/2} \right)^2$$

where $k_{t,ST}$ and $k_{t,GMA}$ are the homo-termination rate constants for ST and GMA, respectively. Furthermore, p_{ST} and p_{GMA} were given by:

$$p_{ST} = \frac{\frac{r_{ST}f_{ST}}{k_{p,ST}}}{\frac{r_{ST}f_{ST}}{k_{p,ST}} + \frac{r_{GMA}f_{GMA}}{k_{p,GMA}}} \text{ and } p_{GMA} = 1 - p_{ST}.$$

 $k_{t,ST}$ was taken from Beuermann and Buback⁴ while $k_{t,GMA}$ was not available from the literature and thus the termination rate constant for MMA was substituted in its place¹⁰. Thus, the product of $\langle k_p \rangle$ [P·] can be determined. Note however, that due to the [P·] term, the expression is time dependent. To account for this, [P·] at each composition was plotted as a function of time. [P·] dramatically decreased and leveled to nearly a constant value after only a few minutes (Fig. S1). The concentration at 10 minutes was then taken as the steady value for [P], which would have been reasonable during the time-scale of the experiments. Table S2 lists the [P·] after 10 minutes as a function of feed composition. The [P·] values were then multiplied by the expression for $\langle k_p \rangle$ and plotted in Figure 3 of the manuscript along with the experimental data.

Parameter	Value		
r _{ST}	0.292 ^{ref. 2}		
r _{GMA}	0.528 ^{ref. 2}		
S _{ST}	$0.278^{\mathrm{ref.}2}$		
S _{GMA}	1.046 ^{ref. 2}		
$k_{p,ST}$ (L mol ⁻¹ s ⁻¹)	900 ^{ref. 3}		
$k_{p,GMA} (L \text{ mol}^{-1} \text{ s}^{-1})$	$3000^{\text{ref.4}}$		
K_{ST} (mol L ⁻¹)	$4.0 \times 10^{-10 \text{ ref. 7}}$		
$K_{GMA} \ (\mathrm{mol} \ \mathrm{L}^{-1})$	$1.0 \ x \ 10^{-7 \ ref. \ 8,a}$		
$k_{t,ST} (L \text{ mol}^{-1} \text{ s}^{-1})$	1.3×10^{8} ref. 4		
$k_{t,GMA}$ (L mol ⁻¹ s ⁻¹)	$2.6 \times 10^{7 \text{ ref. 10,b}}$		
$[\mathbf{I}]_0 ((\mathbf{mol} \ \mathbf{L}^{\cdot 1})$	0.020°		

Table S1: List of parameters used for the estimation of the apparent rate constants for the nitroxide mediated copolymerization of styrene/glycidyl methacrylate mixtures at 90 °C.

^a Since K_{GMA} was not available, the equilibrium constant for methyl methacrylate, K_{MMA} , was used in its place.

^b Since $k_{t GMA}$ was not available, the termination rate constant for methyl methacrylate, k_{tMMA} , was used in its place.

 $[I]_0$ is the initial alkoxyamine concentration.

Fig S1. Plot of concentration of propagating radicals $[P \cdot]$ as a function of time (using Equation 3).

Table S2	: Estimates	of the	propagating	radical	concentration	[P·]	as a	function	of feed
glycidyl 1	nethacrylate	e (GMA	A)/styrene (S	T) feed o	compositions.				

GMA feed composition $f_{GMA,0}$	$[\mathbf{P} \cdot]_{t=10 \text{ min}} (\text{mol } \mathbf{L}^{-1})$
0	3.2 x 10 ⁻⁸
0.1	3.4 x 10 ⁻⁸
0.2	3.5 x 10 ⁻⁸
0.3	3.6 x 10 ⁻⁸
0.4	3.7 x 10 ⁻⁸
0.5	3.9 x 10 ⁻⁸
0.6	4.1 x 10 ⁻⁸
0.7	4.5 x 10 ⁻⁸
0.8	5.2 x 10 ⁻⁸
0.85	5.8 x 10 ⁻⁸
0.9	6.9 x 10 ⁻⁸
0.95	9.0 x 10 ⁻⁸
1	3.5 x 10 ⁻⁷

References

- 1. T. Fukuda, Y.-D. Ma and H. Inagaki, *Macromolecules*, 1985, 18, 17-26.
- 2. W. Wang and R. A. Hutchinson, Macromolecules, 2008, 41, 9011-9018.
- M. Buback, R. G. Gilbert, R. A. Hutchinson, B. Klumperman, F. D. Kutchta, B. G. Manders, K. F. O'Driscoll, G. T. Russell and J. Schweer, *Macromol. Chem. Phys.* 1995, **196**, 3267-3280.
- 4. S. Beuermann and M. Buback, Prog. Polym. Sci., 2002, 27, 191-254.
- 5. H. Fischer, J. Polym. Sci. Part A: Polym. Chem., 1999, 37, 1885-1901.
- 6. B. Charleux, J. Nicolas and O. Guerret, Macromolecules, 2005, 38, 5485-5492.
- 7. D. Benoit, S. Grimaldi, S. Robin, J. P. Finet, P. Tordo and Y. Gnanou, J. Am. Chem. Soc., 2000, **122**, 5929-5939.
- 8. G. S. Ananchenko, M. Souaille, H. Fischer, C. Le Mercier and P. Tordo, J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 3264-3283.
- 9. Y.-D. Ma, K.-S. Sung, Y.Tsujii and T. Fukuda, Macromolecules, 2001, 34, 4749–4756.
- 10. M. S. Matheson, E. E. Auer, E. B. Bevilacque, E. J. Hart, J. Am. Chem. Soc., 1949, **71**, 497-504.