Facile Routes to Star Polymers via an Organocatalytic Approach

Daniel J. Coady, Amanda C. Engler, Yi Yan Yang, and James L. Hedrick*

*Email: <u>Hedrick@almaden.ibm.com</u>

Supplementary Information

Figure 1. 2D NMR of bis-MPA G-1 dendrimer (red) and bis-MPA G-1 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 2. 2D NMR of bis-MPA G-2 dendrimer (red) and bis-MPA G-2 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 3. 2D NMR of bis-MPA G-4 dendrimer (red) and bis-MPA G-4 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 4. 2D NMR of β -cyclodextrin (red) and β -cyclodextrin with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d₆ DMSO:CDCl₃.

Figure 5. 2D NMR of PPI G-1 dendrimer (red) and PPI G-1 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 6. 2D NMR of PPI G-2 dendrimer (red) and PPI G-2 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 7. 2D NMR of PPI G-3 dendrimer (red) and PPI G-3 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 8. 2D NMR of PPI G-4 dendrimer (red) and PPI G-4 dendrimer with five (L)-lactide repeat units (blue). Both NMRs were taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 9. ¹H-NMR of bis-MPA G-2 dendrimer with five (L)-lactide repeat units. NMR was taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 10. ¹³C-NMR of bis-MPA G-2 dendrimer with five (L)-lactide repeat units. NMR was taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 11. ¹H-NMR of Boltorn dendrimer with five (L)-lactide repeat units. NMR was taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 12. ¹³C-NMR of Boltorn dendrimer with five (L)-lactide repeat units. NMR was taken in a 50:50 by weight mixture of d_6 DMSO:CDCl₃.

Figure 13. ¹H-NMR of β -cyclodextrin with five (L)-lactide repeat units. NMR was taken in a 50:50 by weight mixture of d₆ DMSO:CDCl₃.

Figure 14. ¹³C-NMR of β -cyclodextrin with five (L)-lactide repeat units. NMR was taken in a 50:50 by weight mixture of d₆ DMSO:CDCl₃.

Figure 15. THF GPC traces of G-4 dendrimers with 20 (L)-lactide repeat units.