Branching out with Aminals: Microporous Organic Polymers from Difunctional Monomers

Andrea Laybourn, ^a Robert Dawson, ^a Rob Clowes, ^a Jonathan A. Iggo, ^a Dave J. Adams, ^a Yaroslav Z. Khimyak, ^a Andrew I. Cooper ^a

Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK Email: <u>d.j.adams@liverpool.ac.uk</u>

Supplementary Information

Contents

Section 1: Nitrogen Gas Sorption	pages 3-4
Section 2: SEM	page 5
Section 3: TGA	page 6
Section 4: Synthesis of Small Molecule Analogue	page 7
Section 5: ¹ H- ¹⁵ N CP/MAS Solid-State NMR Spectra	pages 8-9
Section 6: Carbon Dioxide Sorption and Selectivity	pages 10-11
References and Acknowledgements	page 9

Section 1: Nitrogen gas sorption

Pore size distributions and pore volumes were derived from the adsorption branches of the isotherms using the non-local density functional theory (NL-DFT) pore model for pillared clay with cylindrical pore geometry, as these were found to give the best fit.

Figure S1-1: PI-1 BET-Plot

Figure S1-2: PI-1 Pore size distribution curve

Figure S1-3: PI-2 BET-Plot

Figure S1-4: PI-2 Pore size distribution plot

Figure S2-1: SEM image of PI-1 (scale bars inset)

Figure S2-2: SEM image of PI-2 (scale bars inset)

Section 3: Thermogravimetric Analysis (TGA) Curves

Figure S3-1: TGA curve of PI-1 along with starting monomers

Figure S3-2: TGA curve of PI-2 along with starting monomers

Section 4: Synthesis of Small Molecule Analogue

Scheme S4-1: Reaction used to synthesise small molecule analogue A-1 of PI-1

Method

The small molecule analogue **A-1** (See Scheme S4-1) was synthesised using a similar procedure to that reported previously.¹ To a stirred solution of 2,6-diaminopyridine (109 mg, 1.0 mmol) in ethanol (anhydrous, *ca.* 10 mL) was added dropwise a solution of benzaldehyde (0.20 mL, 2.0 mmol) in ethanol (anhydrous, 13.0 mL). The reaction mixture was heated to 80°C for 3 hours. After this time, the sovent was removed *in vacuo* and the crude product was recrystallised. Compound **A1** was obtained as a dark yellow solid. Yield: 152.8 mg, 49.9%. Dissolution of **A-1** in CDCl₃ led to hydrolytic cleavage of the aminal bond, resulting in peaks corresponding to the amine and aldehyde starting materials in solution NMR. Elemental Analysis: Observed (%):C, 74.67; H, 5.58; N, 15.58. Required C, 66.65; H, 5.92; N, 27.43 (Assuming only aminal formation occurs). Required C, 79.98; H, 5.30; N, 14.73 (Assuming only imine formation occurs). FTIR (KBr discs) cm⁻¹: 3449 (-N-H amine, broad), 3385 (-N-H aminal, broad), 1630 (-C=N- imine, sharp).

Section 5: ¹H-¹⁵N CP/MAS solid-state NMR Spectra

To unambiguously assign the ¹⁵N peaks, ¹H-¹⁵N CP/MAS NMR data (at an MAS rate of 5 kHz) were collected for model compounds (structures and chemical shifts are given in *Table S5-1*). The corresponding NMR spectra are shown in *Figure S5-1*.

Table S5-1

		¹⁵ N chemical	
Name of Compound	Structure	shift (ppm)	Type of nitrogen
			environment
			D
2,4-diaminotoluene		57	Primary amine
(Aldrich)			(R-NH ₂)
Reduced Cage 3			
(ref 2)		47	Secondary amine
			(R-NH-R)
Cage 1-beta R3		336	Imine
(ref 2)			(R-C=N-R)
			(split into 3 peaks due to
			$R3 \text{ symmetry})^2$
		32	Primary amine
A1			$(R-NH_2)$
(see method in			
Section 4)			
		60 to 90	Secondary amine
			(R-NH-R)
		225	
		227	Pyridine heterocyclic
			nitrogen

Figure S5-1: ¹H-¹⁵N CP/MAS NMR spectra of MOPs and model compounds. Asterisks denote spinning sidebands. An MAS rate of 5 kHz was used.

Figure S6-1: Isosteric heats of adsorption

Figure S6-2: CO₂/N₂ gas selectivity at 298 K for PI-1

Figure S6-2: CO₂/N₂ gas selectivity at 298 K for PI-1

Table S6-1: Carbon dioxide uptakes and	selectivity summary
--	---------------------

	CO ₂ uptak	ke at 1 bar	N ₂ uptake at	Heat of	CO ₂ /N ₂ selectivity	
	(mm	ol/g)	298 K and 1	adsorption for		
	273 K	298 K	bar (mmol/g)	CO ₂ (kJ/mol)	Ideal selectivity	Henry law constants
PI-1	2.00	1.41	0.15	34	9.5	27:1
PI-2	1.51	1.00	0.15	27	6.7	12:1

References and Acknowledgements

- 1. Miao, Z.; Fu, Y.; Xu, Z.; Li, G.; Jiang, J., Mendeleev Commun., 2009, 19, 270-271.
- Tozawa, T.; Jones, J. T. A.; Swamy, S.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A.I., *Nat. Mat.*, **2009**, *8*, 973-978.