Supporting Information

From benzodiazaborole-based compound to donor-acceptor polymer via electropolymerization

Shotaro Hayashi*, Toshio Koizumi

Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-9696, Japan.

Experimental

All reagents and solvents were purchased from commercial sources. Synthesis of M1 and M2 were carried out according to the previous work. ${ }^{[2 \mathrm{~b}]}$ Electrodes (Pt and Ag) were polished with $\mathrm{Al}_{2} \mathrm{O}_{3}$ before use. ITO electrode was used as received. ${ }^{1} \mathrm{H}$ - and
${ }^{13} \mathrm{C}-$ NMR spectra were recorded on a JEOL EX-270 ($\left.{ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75.45 \mathrm{MHz}\right)$ spectrometer. Elemental analyses were performed on a Thermo Finnigan Flash EA1112 CHN-O analyzer. UV-vis spectra were obtained on a Shimadzu UV-1650 spectrometer. Solid-state absorption spectra of M1, M2 and M3 were recorded by film casted on a glass plate from a toluene solution. PL spectra were obtained on a SPEX FL-3-21 Tau spectrometer. CV measurements and electropolymerization were carried out on a

HOKUTO DENKO HABF501. The XPS spectra were obtained using a PHI-1600 ESCA system.

M3: M2 (54 mg, 0.20 mmol) and 3,5-dimethylbenzene-1-boronic acid ($30 \mathrm{mg}, 0.20$ mmol) were dissolved in a toluene solution (2 ml). The mixture was stirred at $105^{\circ} \mathrm{C}$ for 24 h . The solvent was then removed on a rotary evaporator to yield a red colored powder. The sample was then recrystallized from dichloromethane / hexane (1:9). Yield $71 \mathrm{mg}(92 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta \quad 7.44-7.34$ (Ar-H, m), 7.231 (Ar-H, $J=3.6,2 \mathrm{H}), 7.165(\mathrm{NH}, \mathrm{s}, 2 \mathrm{H}), 7.092$ (Ar- $H, \mathrm{~s}, 2 \mathrm{H}), 2.374\left(-\mathrm{CH}_{3}, \mathrm{~s}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.45 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta \quad 148.70,141.54,137.99,134.52,132.14,131.34,128.39$, 125.37, 125.13, 120.31, 118.07, 21.748. Anal. Calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BN}_{2} \mathrm{~S}_{2}\right)$: C, 68.39; H, 4.96; N, 7.25. Found: C, 68.29; H, 4.89; N, 7.14.

Electropolymerization of M1 and M3 (10 mM) was carried out in 0.1 M tetraethylammonium tetrafluoroborate / acetonitrile solution by a cyclic potential-sweep method in an undivided cell equipped with an ITO working electrode for UV-vis absorption measurements or a platinum wire working electrode for CV measurements, a platinum wire counter electrode, and a silver wire as a reference. The deposited polymer on the working electrode was rinsed with dry acetonitrile, then dry chloroform and dried under reduced pressure.

Electrochemical properties of M1 show both the reversible oxidation and reduction potentials $\left(E_{p a}=0.94 \mathrm{~V}, E_{p c}=-1.65 \mathrm{~V}\left(v s . \mathrm{Ag} / \mathrm{Ag}^{+}\right)\right)$, respectively, whereas cyclic voltammogram of M3 shows a reversible oxidation potential at ($E_{p a}=0.97 \mathrm{~V}$ (vs $\left.\mathrm{Ag} / \mathrm{Ag}^{+}\right)$) and an irrversible reduction potential $\left(E_{p c}=-1.31 \mathrm{~V}\left(v s . \mathrm{Ag} / \mathrm{Ag}^{+}\right)\right)$(Figure S1).

Figure S1. Cyclic voltamograms of M1 (top) and M3 (bottom) at $0.1 \mathrm{~V} / \mathrm{sec} . \mathrm{Fe} / \mathrm{Fe}^{+}=$ 0.41 V . A three electrode system equipped with a platinum electrode, a platinum counter electrode and a Ag wire as a reference electrode was used in an electrolytic solution of acetonitrile containing 0.1 M tetraethylammonium tetrafluoroborate.

Figure S2. Electropolymerization of M1 (a) and M3 (b) in $10 \mathrm{mM} \mathrm{Et}_{4} \mathrm{NBF}_{4} /$ acetonitrile at $0.1 \mathrm{~V} / \mathrm{sec} . \mathrm{Fe} / \mathrm{Fe}^{+}=0.41 \mathrm{~V}$. A three electrode system equipped with a ITO electrode, a platinum counter electrode and a Ag wire as a reference electrode was used in an electrolytic solution of acetonitrile containing 0.1 M tetraethylammonium tetrafluoroborate.

binding energy (eV)
 binding energy (eV)

S2p

binding energy (eV)
binding energy (eV)

Figure S3. XPS results of P3.

