Supporting Information

Polypeptide Core-Shell Silica Nanoparticles with High Grafting Density by N-Carboxyanhydride (NCA) Ring Opening Polymerization as Responsive Materials and for Bioconjugation

Tushar Borase¹, Marcello Iacono¹, S. I. Ali², Paul D. Thornton¹, A. Heise^{1,2}*

¹Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland. ²Technische Universiteit Eindhoven, Laboratory of Polymer Chemistry, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Figure 1. ¹H NMR spectrum of Si NP-g-PBLG in CDCl₃.

Figure 2: TEM images of (a) NP-OH (b) NP-g-PLG (NP-g-PBLG deprotected with HBr/AcOH) (c) NP-NH₂ + free PBLG after washing with CHCl₃.

Figure 3: GPC trace of PBLG degrafted from the silica nanoparticles by HF treatment (M_n 18100 Da, PDI 1.4.).

Figure 4: ATR-IR spectrum of silica NP-g-PtBLC.

Figure 5: Thermogravimetric analysis (TGA) of (a) Si NP-*g*-PZLL before THF wash, (b) Si NP-*g*-PZLL after THF wash (c) Si NP-*g*-PLL (d) Si NP-NH₂. Comparison of (a) and (b) allows to determine the amount of unbound polymer.