Supporting Information

Cyclopenta[*c*]thiophene oligomers based solution processable D-A copolymers and their application as FET materials

Anjan Bedi^a, Satyaprasad P. Senanayak^b, Soumyajit Das^a, K.S. Narayan^{b*}, Sanjio S. Zade^{a*}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, PO: BCKV campus main office, Mohanpur 741252, Nadia, West Bengal, India. ^bChemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific

Research, Bangalore 560064, Karnataka, India

[*] email: <u>sanjiozade@iiserkol.ac.in</u>, <u>narayan@jncasr.ac.in</u>

Contents

Figure S1. ¹ H NMR of newly synthesised 2a	Page S3
Figure S2. ¹³ H NMR of newly synthesised 2a	Page S4
Figure S3. ¹ H NMR of newly synthesised 3a	Page S5
Figure S4. ¹ H NMR of newly synthesised 3a	Page S6
Figure S5. ¹ H NMR of previously reported 4a	Page S7
Figure S6. ¹³ C NMR of previously reported 4a	Page S8
Figure S7. ¹ H NMR of newly synthesised 4b	Page S9
Figure S8. ¹³ C NMR of newly synthesised 4b	Page S10

Figure S9. ¹ H NMR of newly synthesised 5a	Page S11
Figure S10. ¹ H NMR of newly synthesised 5b	Page S12
Figure S5. ¹ H NMR of previously reported 6	Page S13
Figure S11. ¹ H NMR of previously reported 7	Page S14
Figure S12. ¹ H NMR of newly synthesised P1	Page S15
Figure S13. ¹ H NMR of newly synthesised P2	Page S16
Figure S14. PXRD of the polymers	Page S16

ab und ance 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 14 150.0 X : parts per Million 143.7898 40 138,4027 130.4223 124.5871 123.2809 :130 120 111.0289 0.0 8 8 77.3147 77.0000 76.6854 \geq 렲. 59.2562 55.1182 5 ŧ. 34.2088 8 ĕ 5 Fig S8. ¹³C NMR spectra of compound 4b

1.5

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2012

PXRD

The PXRD patterns (Fig. 4) for both the polymers were obtained after annealing their drop cast films (from chloroform solution) at 150 °C. Bragg refraction peaks were observed around $2\theta \approx 12^{\circ}$ and 24° for **P1** and 21° for **P2**. For P1 the peak at $2\theta \approx 12^{\circ}$ is too broad to be concluded as a result of side-chain ordering but the peaks at $2\theta \approx 24^{\circ}$ and 21° , respectively for **P1** and **P2** could be attributed to π -stacking between the polymer chains. The broader angle peaks ($2\theta \sim 24^{\circ}$ and 21°) corresponds to the π -stacking distances of ~ 3.7 Å and ~ 4.3 Å. So the compounds have semi crystalline nature as they did not exhibit any T_g or crystallisation during DSC between 25-250 °C but possess π -stacking.

Fig S15. PXRD for P1 and P2.

P1 film was cycled 90 times between 0.0 and ± 1.2 V (Figure 15a) and **P2** film was cycled 90 times between 0.0 and ± 0.9 V (Figure 15a). The total charge decrease between the initial and 90th cycle was significant for **P1**, however, P2 showed minor change in the total charge. It indicates a better stability of **P2** than **P1** during the redox cycles.

Fig S16. The CV of (a) P1 and (b) P2 in TBAPC at their 1st, 2nd and 90th cycle using TBAPC as electrolyte for P1 for P2.