Supporting Information

Fluorinated Polyhedral Oligomeric Silsesquioxane-Based Shape Amphiphiles: Molecular Design, Topological Variation, and Facile Synthesis

Jinlin He,^{1,2,§}Kan Yue,^{1,§} Yuqing Liu,¹Xinfei Yu,¹PeihongNi,²Kevin A. Cavicchi,¹

Roderic P. Quirk,¹Er-Qiang Chen,³* Stephen Z. D. Cheng¹* and Wen-Bin Zhang,¹*

¹College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325-3909, USA

²College of Chemistry, Chemical Engineering, and Materials Science, Jiangsu Key

Laboratory of Advanced Functional Polymer Design and Application, Soochow

University, Suzhou 215123, P. R. China

³Department of Polymer Science and Engineering and Key Laboratory of Polymer

Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular

Engineering, Peking University, Beijing100871, P. R. China

E-mail: wz8@uakron.edu (W.-B.Z.); scheng@uakron.edu (S.Z.D.C.);

eqchen@pku.edu.cn (E.Q.C.)

[§]These authors contributed equally to this work.

Contents

- 1. Fig. S1. ¹³C NMR spectra of (a) VPOSS-PCL, and (b) FPOSS-PCL.
- 2. Fig. S2. FT-IR spectra of (a) VPOSS-PCL, and (b) FPOSS-PCL.
- 3. Fig. S3. ¹³C NMR spectra of (a) PS-(SiH)-OH, (b) PS-(VPOSS)-OH, (c) PS-(VPOSS)-PCL, and (d) PS-(FPOSS)-PCL.
- 4. Fig. S4. FT-IR spectra of (a) PS-(SiH)-OH, (b) PS-(VPOSS)-OH, (c) PS-(VPOSS)-PCL, and (d) PS-(FPOSS)-PCL.
- 5. Table S1. Comparison of Molecular Weight Obtained from Two SEC instruments.

Fig. S1. ¹³C NMR spectra of (a) VPOSS-PCL, and (b) FPOSS-PCL.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2012

Fig. S2. FT-IR spectra of (a) VPOSS-PCL, and (b) FPOSS-PCL.

FPOSS-Based Shape Amphiphiles

Fig. S3. ¹³C NMR spectra of (a) PS-(SiH)-OH, (b) PS-(VPOSS)-OH, (c) PS-(VPOSS)-PCL, and (d) PS-(FPOSS)-PCL.

Fig. S4. FT-IR spectra of (a) PS-(SiH)-OH, (b) PS-(VPOSS)-OH, (c) PS-(VPOSS)-PCL, and (d) PS-(FPOSS)-PCL.

Sample	$M_{ m n,NMR}$				ма	٥	м ^b	bDIp
	XPOSS	PS	PCL	Total	M _{n,SEC}	PDI	M _{n,SEC}	PDI
VPOSS-PCL	650		6.7k	7.4k	8.1k	1.12	5.1k	1.39
FPOSS-PCL	4009.8		6.7k	10.7k	9.6k	1.10	5.7k	1.40
PS-(SiH)-OH		6.9k		6.9k	6.0k	1.06	6.9k	1.02
PS-(VPOSS)-OH	650	6.9k		7.6k	6.5k	1.05	7.7k	1.01
PS-(VPOSS)-PCL	650	6.9k	13.7k	20.6k	15.0k	1.11	12.9k	1.04
PS-(FPOSS)-PCL	4009.8	6.9k	13.7k	24.0k	14.8k	1.27	14.4k	1.16

Table S1. Comparison of molecular weights obtained from two SEC instruments.

^a These data were obtained from the Waters Breeze system. ^b These data were obtained from the Waters 150-C Plus instrument.