Electronic Supplementary Information

One-step RAFT Synthesis of Well-Defined Amphiphilic Star Polymers and their Self-Assembly in Aqueous Solution

Christoph Herfurth,¹ *Paula Malo de Molina*,² *Christoph Wieland*,¹ *Michael Gradzielski*²* *and André Laschewsky*^{1,3}*

¹⁾ Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany

²⁾ Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, 10623 Berlin, Germany

³⁾ Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam, Germany

Figure S 1. SEC traces (DMF + 0.1% LiBr, calibrated with linear PS-standards) for 3C12 PDMA star polymers made with ratios of DMA : CTA of $300 \rightarrow 1050$: 1 (from left to right).

Figure S 2. SEC traces (DMF + 0.1% LiBr, PS-standards) for 2C12-, 3C12- and 4C12-PDMA (from left to right) with arm lengths of $DP_n = 125$.

Figure S 3. Evolution of $\ln([M]_0/[M]_t)$ over time for the polymerization of DMA using 2C12- (**•**), 3C12- (**•**) and 4C12-CTA (**\triangle**).

Figure S 4. M_n^{app} from SEC in DMF + 0.1% LiBr over conversion for the polymerisation of DMA using 2C12-(**a**), 3C12-(**b**) and 4C12-CTA (**b**).

Figure S 5. SANS patterns of the aggregates of 3C12-PDMA (sample 10) in d8-THF at concentrations of 1 (\Box), 2 (\bigtriangleup) and 3 wt% (\circ).

Figure S 6. Distribution function of the decay times as obtained from inverse Laplace transform analysis for the corrrelation functions of 1 wt% solutions of 2C12-, 3C12- and 4C12-PDMA in water.

Figure S 7. a) Electric field correlation function of 3C12-PDMA 1wt% in water with the corresponding monoexponential decay, one stretched exponential decay and bi-exponential decay fits. **b)** Residuals of the second order cumulant analysis, mono-exponential decay, one stretched exponential decay and bi-exponential decay fits.