Synthesis of Aramids by Bulk Polycondensation of

 Aromatic Dicarboxylic Acids with 4,4'-Oxydianiline

 Aromatic Dicarboxylic Acids with 4,4'-Oxydianiline}

Yu Shoji ${ }^{a}$, Cenyao Zhang ${ }^{a}$, Tomoya Higashihara ${ }^{a, b}$, and Mitsuru Ueda* ${ }^{a}$

${ }^{a}$ Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H120, O-okayama, Meguro-ku, Tokyo 152-8550, Japan. E-mail: ueda.m.ad@m.titech.ac.jp
${ }^{b}$ PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan. E-mail: thigashihara@polymer.titech.ac.jp

Experimental supplements

B)

Fig. S1 A) FT-IR and B) ${ }^{1} \mathrm{H}$ NMR spectra of aramid 4a.

Polycondensation of aramid 4b

The title aramid $\mathbf{4 b}$, was synthesized according to the same procedure as $\mathbf{4 a}$ performed with $0.392 \mathrm{~g}(1.00 \mathrm{mmol})$ of $\mathbf{1 b}$ and $0.220 \mathrm{~g}(1.10 \mathrm{mmol})$ of $\mathbf{2}$. After the reaction, the aramid $\mathbf{4 b}$ ($0.551 \mathrm{~g}, 99 \%$ yield) was isolated as a light blue fiber. IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3440(\mathrm{~N}-\mathrm{H}$, amide), 1658 (C=O, amide). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$, $\delta, \mathrm{ppm}, 40^{\circ} \mathrm{C}$): 10.3 (s, $\mathrm{N}-\mathrm{H}, 2 \mathrm{H}$), 8.04 (d, J=8.5 Hz, ArH, 4H), 7.80 (d, J=9.0 ArH, 4H), 7.52 (d, J=7.9 Hz, ArH, 4H), 7.03 (d, J=8.9 Hz, ArH,

4H).

Fig. S2 A) FT-IR and B) ${ }^{1}$ H NMR spectra of aramid $\mathbf{4 b}$.

Polycondensation of aramid 4c

The title aramid 4c, was synthesized according to the same procedure as $4 \mathbf{a}$ performed with $0.258 \mathrm{~g}(1.00 \mathrm{mmol})$ of $\mathbf{1 c}$ and $0.220 \mathrm{~g}(1.10 \mathrm{mmol})$ of $\mathbf{2}$. After the reaction, the aramid $\mathbf{4 c}$ ($0.406 \mathrm{~g}, 97 \%$ yield) was isolated as a light blue fiber. IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3293$ ($\mathrm{N}-\mathrm{H}$, amide), 1650 (C=O, amide). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.\mathrm{d}_{6}, \delta, \mathrm{ppm}, 40^{\circ} \mathrm{C}\right): 10.2(\mathrm{~s}, \mathrm{~N}-\mathrm{H}, 2 \mathrm{H}), 8.09(\mathrm{~d}$, J=8.5 Hz, ArH, 4H), 7.80 (d, J=8.9 Hz, ArH, 4H), 7.25 (d, J=7.2 Hz, ArH, 4H), 7.07 (d, J=8.8 Hz, ArH, 4H).

B)

Fig. S3 A) FT-IR and B) ${ }^{1} \mathrm{H}$ NMR spectra of aramid 4c. *These signals were assigned to the protons from terminal groups of oligomer because aramid $\mathbf{4 c}$ had the low solubility in DMSO.

Synthesis of 3-(4-phenoxyphenylcarbamoyl)benzoic acid (5)

To a solution of isophthaloyl dichloride ($1.00 \mathrm{~g}, 4.96 \mathrm{mmol}$) in dehydrated NMP (20 mL), a solution of 4-phenoxyaniline ($1.03 \mathrm{~g}, 5.56 \mathrm{~mol}$) in dehydrated NMP (10 mL) was slowly added at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was warmed up to room temperature, then stirred for 1 h . After the reaction, the resulting solution was poured into NaOHaq (500 mL , $3 \mathrm{wt} \%$). The precipitate, which was diamide as a byproduct, was removed by filtration, and then the solution was acidified by conc. HCl to produce 5 as a solid. The precipitate was collected by filtration and dried under the reduced pressure. The resulting solid was purified by recrystallization from ethyl acetate and hexane $(6 / 4, \mathrm{v} / \mathrm{v})$ to obtain 5 as a white crystal $(0.458 \mathrm{~g}$, 28\% yield).

IR (KBr), v $\left(\mathrm{cm}^{-1}\right): 3282\left(\mathrm{~N}-\mathrm{H}\right.$, amide), $1689\left(\mathrm{C}=\mathrm{O}\right.$, carboxylic acid), $1643(\mathrm{C}=\mathrm{O}$, amide $) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \operatorname{ppm}, 40^{\circ} \mathrm{C}$): 13.1 (br s, $\left.-\mathrm{COOH}, 1 \mathrm{H}\right), 10.4$ (s, N-H, 1H), 8.55 (s, ArH, 1H), 8.20 (d, J=8.4 Hz, ArH, 1H), 8.15 (d, J=8.4 Hz, ArH, 1H), 7.81 (d, J=9.0 Hz, ArH, 2H), 7.66 (t, J=7.8 Hz, ArH, 1H), 7.38 (t, J=8.0 Hz, ArH, 2H), 7.11 (t, J=7.2 Hz, ArH, 1H), 7.07-6.98 (m, ArH, 4H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta, \mathrm{ppm}, 40^{\circ} \mathrm{C}$): 166.7, 164.5, 157.2, 152.3, 135.2, 134.7, 131.9, 131.7, 131.0, 129.8, 128.6, 128.3, 122.9, 122.1, 119.0, 117.9. m.p. $270.6{ }^{\circ} \mathrm{C}$ with the decomposition (measured by TG/DTA). Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}: \mathrm{C}, 72.06 ; \mathrm{H}, 4.54 ; \mathrm{N}, 4.20$. Found: C, 72.06; H, 4.64; N, 4.07.

To a solution of 4-amino-4'-nitorodiphenyl ether ($1.16 \mathrm{~g}, 5.05 \mathrm{mmol}$) in dehydrated NMP (10 mL), benzoyl chloride ($1.25 \mathrm{~mL}, 10.8 \mathrm{mmol}$) was slowly added at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was warmed up to room temperature, then stirred for 1 h . After the reaction, the solution was poured into NaHCO_{3} aq (300 mL , $5 \mathrm{wt} \%$). The precipitate was collected by filtration, and then purified by recrystallization from ethyl acetate to give the titled compound as a brown crystal which was a desired product ($1.47 \mathrm{~g}, 87 \%$ yield).

IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3344\left(\mathrm{~N}-\mathrm{H}\right.$, amide), $1651\left(\mathrm{C}=\mathrm{O}\right.$, amide), 1523, $1342\left(-\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}, \delta, \operatorname{ppm}, 40^{\circ} \mathrm{C}\right): 10.3(\mathrm{~s}, \mathrm{~N}-\mathrm{H}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, \mathrm{ArH}, 2 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=6.6$ Hz, ArH, 2H), 7.92 (d, J=9.0 Hz, ArH, 2H), 7.62-7.51 (m, ArH, 3H), 7.19 (d, J=9.0 Hz, ArH, 2H), 7.13 (d, J=9.0 Hz, ArH, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta, \mathrm{ppm}, 40{ }^{\circ} \mathrm{C}$): 165.4, 163.1, $149.7,142.0,136.5,134.8,131.4,128.2,127.5,125.9,122.1,120.5,116.9$. m.p. 213.1-214.2 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2}$: C, 68.26; H, 4.22; N, 8.38. Found: C, 68.28; H, 4.37; N, 8.30.

Synthesis of N-(4-(4-aminophenoxy)phenyl)benzamide (6)

6

A mixture of N-(4-(4-nitrophenoxy)phenyl)benzamide ($0.616 \mathrm{~g}, 1.84 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ $(0.0217 \mathrm{~g})$ in tetrahydrofuran (10 ml) was stirred at room temperature for 24 h under hydrogen atmosphere. The solution was filtered through Celite, concentrated, and purified by recrystallization from ethyl acetate and hexane $(7 / 3, v / v)$ to give the desired compound $\mathbf{6}$ as a pale red solid ($0.378 \mathrm{~g}, 67 \%$ yield).

IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3402\left(\mathrm{~N}-\mathrm{H}\right.$, amide), $3344\left(\mathrm{~N}-\mathrm{H}\right.$, amine), 1651 ($\mathrm{C}=\mathrm{O}$, amide). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d_{6}, \delta, \operatorname{ppm}, 4{ }^{\circ} \mathrm{C}$): 10.1 (s, N-H, 1H), 7.96 (d, J=6.6 Hz, ArH, 2H), 7.70 (d, J=9.0 Hz, ArH, 2H), 7.60-7.49 (m, ArH, 3H), 6.89 (d, J=9.0 Hz, ArH, 2H), 6.77 (d, J=8.4 Hz, ArH, 2H), $6.62(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \operatorname{ArH}, 2 \mathrm{H}), 4.86\left(\mathrm{br} \mathrm{s},-\mathrm{NH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $d_{6}, \delta, \mathrm{ppm}$, $\left.40^{\circ} \mathrm{C}\right): 165.1,154.7,146.3,145.0,134.9,133.4,131.2,128.1,127.4,121.9,120.2,116.8,114.8$. m.p. 171.7-172.5 ${ }^{\circ}$ C. Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2}$: C, 74.98; H, 5.30; N, 9.20. Found: C, 74.90; H, 5.47; N, 9.04.

Fig. S4 TG/DTA curve for oligo-aramid 3a.

