Electronic Supporting Information

Redox-Induced Polymerization/Depolymerization of Metallo-Supramolecular Polymers

Adriane K. Miller,^a Zheng Li,^a Alexander M. Jamieson,^{a*} and Stuart J. Rowan^{a,b,c*}

^a Department of Macromolecular Science & Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio, 44106-7202, USA. E-mail: <u>stuart.rowan@case.edu</u>

^b Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA

^c Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA

Table of Contents

Fig. S1. ¹H-NMR spectrum of **1** in CDCl₃.

Fig. S2. ¹³C-NMR spectrum of 1 in CDCl₃.

Fig. S3. UV-visible absorption titration spectrum of Zn(OTf)₂ in 50 in PrCN.

Fig. S4. UV-visible absorption spectra of 1 titrated with $Cu(OTf)_2$ in PrCN.

Fig. S5. UV-visible absorption spectrum of 1 titrated with CuOTf in PrCN.

Fig. S6. ¹H-NMR spectrum of $1 \cdot Cu(I)_2$ in Acetone-d₆.

Fig. S2. ¹³C-NMR spectrum of $\mathbf{1}$ in CDCl₃ (125 MHz).

Fig. S3. UV-visible absorption spectra of **1** (0.475 mg/mL) in PrCN, titrated with 20 μL aliquots of a solution containing Zn(OTf)₂, (1.157 mM) and **1** (0.475 mg/mL) in PrCN. Insert: plot of absorbance at various wavelengths vs. concentration of Zn(II).

Zn(II) binds the Mebip ligand in a ratio of 1:2, thus making the assumption that **1** is fully endcapped we can calculate the molecular weight of the ditopic macromonomer (**1**) by using the change of gradient in the plot (at 48.3 μM) as the point where all the Mebip ligand is bound.

$$M_n = [\mathbf{1}] \binom{g}{L} * \frac{2 \operatorname{mol} \operatorname{Mebip}}{1 \operatorname{mol} \mathbf{1}} * \frac{1 \operatorname{mol} \operatorname{Zn}(II)}{2 \operatorname{mol} \operatorname{Mebip}} * \frac{1L}{[\operatorname{Zn}(II)] (\operatorname{mol})}$$

Where the first term is reflective of the concentration of **1** in the solution (by weight); the second, of the molar equivalence of Mebip per macromonomer **1**; the third term, of the binding ratio between Zn(II) and Mebip; and the last is the as the inverse of the concentration of Zn(II) at the change of gradient (in mol units). Such that,

$$M_n = \frac{0.475 \ g \ \mathbf{1}}{L} * \frac{2 \ mol \ Mebip}{1 \ mol \ \mathbf{1}} * \frac{1 \ mol \ Zn(II)}{2 \ mol \ Mebip} * \frac{L}{48.3 \ x \ 10^{-6} \ mol \ Zn(II)} \approx 9800 \ g/mol$$

Fig. S4. UV-visible absorption spectra of 1 at 500 μ L titrated with Cu(OTf)₂ in PrCN.

Fig. S5. UV-visible absorption spectra of 1 at 450 µL titrated with Cu(OTf) in PrCN.

Fig. S6. of ¹H-NMR spectrum of $1:Cu(I)_2$ in Acetone-d₆ (600 MHz).