Electronic Supplementary Information for

Dynamic-Covalent Nanostructures Prepared by Diels-Alder Reactions of Styrene-Maleic Anhydride-Derived Copolymers Obtained by Cascade Block Copolymerization

Abhijeet P. Bapat,^{*a*} Jacob G. Ray,^{*b*} Daniel A. Savin,^{*b*} Emily A. Hoff, ^{*b*} Derek L. Patton,^{*b*} Brent S. Sumerlin*^{*a*, *c*}

^a Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314 USA. Fax: (214) 768-4089; Tel: (214) 768-8802; E-mail:bsumerlin@mail.smu.edu

^b School of Polymers and High Performance Materials, The University of Southern Mississippi, Hattiesburg, Mississippi 39406,USA.

^c Center for Drug Discovery, Design, & Delivery, Southern Methodist University, Dallas, TX, 75275, USA

Fig. S1 (A) ¹H and (B) ¹³C NMR spectra of **P1** (red) after functionalization with furfurylamine to give **P1f** (yellow)

Fig. S2 (A) SEC refractive index traces of $P(S-alt-MAn)_{20}-b-PS_{47}$ before (**P2**) (red line) and after (**P2f**) (yellow line) functionalization with furfurylamine (B) SEC refractive index traces of $P(S-alt-MAn)_{20}-b-PS_{81}$ before (**P3**) (red line) and after (**P3f**) (yellow line) functionalization with furfurylamine

Fig. S3 (a) Photographs of the solutions of **P1** in THF with different amounts of furfurylamine after 22 h at 50 °C (The physically crosslinked gel obtained in the presence of 2 equiv. of furfurylamine is possibly a result of complexation between the pendant acid groups on the polymer backbone and the excess furfurylamine, leading to reduced solubility in 1,4-dioxane. Addition of dimethyl acetamide to the gel resulted in a clear solution), (d) SEC refractive index traces of **P1** before (grey line), and after functionalization with furfurylamine [(1 equiv., red line)].

Fig. S4 a) Example of Gaussian multi-peak fitting analysis of the SEC trace of stars containing residual arms. b) Equation for calculation of % Arms based on the Gaussian multi-peak fitting analysis of the SEC traces.

 Table S1 Typical results for synthesis of core-crosslinked stars and micelles by Diels-Alder

 reaction between 4,4'-bismaleimido diphenylmethane and the furan functional block copolymers

 P1f, P2f and P3f

Polymer	M _{n, arm} ^a (g/mol)	$M_{\rm w, \ star}^{b}$ (kg/mole)	Aggregation number $(N_{agg})^c$ (arms/star)	$D_{\rm h}^{\ d}({\rm nm})$
P1f ^e	7100	40300	5676	138
$\mathbf{P2f}^{f}$	10,800	1500	139	29
P3f ^f	14300	460	32	21
P3f ^g	14300	2120	148	38

^{*a*}Calculated by ¹H NMR, ^{*b*}Determined by static light scattering, ^{*c*}Approximate aggregation number calculated by dividing $M_{w,star}$ by $M_{n,arm}$ (it should be noted that these values are approximate because the molecular weight of the arms were M_n values determined by NMR and the molecular weight of the stars are M_w values determined by light scattering). ^{*d*}Determined by dynamic light scattering, ^{*e*}[polymer] = 30 mg/mL and furan:maleimide = 1:2.6, ^{*f*}[polymer] = 50 mg/mL and furan:maleimide \approx 1:2, ^{*g*}Corecrosslinked micelles in toluene at [polymer] = 30 mg/mL and furan:maleimide \approx 1:2

Fig. S5 Results for core-crosslinked star formation via Diels-Alder reactions between P1f and 4,4'-bismaleimido diphenylmethane {[P1f] = 30, 50, and 100 mg/mL in 1,4-dioxane (furan:maleimide= 1:2.6 equiv., temperature = 50°C)} (a) kinetics of the star formation reaction at [P1f] = 30 mg/mL and 50 mg/mL (b) SEC refractive index traces showing the progress of star formation at [P1f] = 30 mg/mL (c) SEC refractive index traces showing the progress of star formation at [P1f] = 50 mg/mL (d) crosslinked gel obtained at [P1f] = 100 mg/mL (i), unchanged gel after addition of solvent and mixing for 15 days at room temperature (ii), and clear solution obtained after decrosslinking of the gel via the retro Diels-Alder reaction (iii)

Fig. S6 Results for core-crosslinked star formation via Diels-Alder reaction between P2f and 4,4'-bismaleimido diphenylmethane {[P2f] = 30, 50, and 100 mg/mL in 1,4-dioxane (furan:maleimide = 1:2 equiv., temperature = 50°C)} (a) kinetics of the star formation reaction at [P2f] = 30 mg/mL and 50 mg/mL (b) SEC refractive index traces showing the progress of star formation at [P2f] = 30 mg/mL (c) SEC refractive index traces showing the progress of star formation at [P2f] = 50 mg/mL (d) crosslinked gel obtained at [P2f] = 100 mg/mL (i), unchanged gel after addition of solvent and mixing for 15 days at room temperature (ii), and clear solution obtained after decrosslinking of the gel via the retro Diels-Alder reaction (iii)

Fig. S7 AFM height and phase images of the stars obtained *via* the Diels-Alder reaction of 4,4'bismaleimido diphenylmethane and (a) P2f and (b) P1f (stars were formed at [P2f] = 50 mg/mLand [P1f] = 30 mg/mL in 1,4-dioxane).

Fig. S8 Solution size distributions of stars obtained at [P3f] = 30 (green), 50 (red), and 100 mg/mL (blue) compared to the unimers (grey) after ~195 h of Diels-Alder reaction in presence of 4,4'-bismaleimido diphenylmethane crosslinker (furan:maleimide = 1:2.1 equiv.)