Well-defined Polymeric Vesicles with High Stability and Modulation of Cell Uptake by a Simple Coating Protocol.

Gökçen Yaşayan, Martin Redhead, Johannes P. Magnusson, Sebastian Spain, Stephanie Allen, Martyn Davies, Cameron Alexander,* and Francisco Fernández Trillo.*

Table of Contents

Monomer Synthesis	1
Phenyl acrylamide (PAm)	1
 N-ω-Acrylamidobutanoic acid (4AmBA) 	2
Polymer Characterization	3
 poly(N-Phenylacrylamide) (p(PAm)-R) (P1) 	3
 poly(4-Acrylamidobutanoic acid) (p(4AmBA)-R) (P2) 	5
 poly(4-Acrylamidobutanoic acid)-block-poly(N-Phenylacrylamide)-RAFT (p(4AmBA)-b- (PAm)-R) 	р 7
General Protocol for the esterification of P3	8
• AFM	10
• TEM	11
Vesicle Stability	12
Uptake by 3T3 Fibroblasts	13
Uptake by A549 cells	14
Monomer Synthesis	

• Phenyl acrylamide (PAm)

To a solution of aniline (4.9 mL, 5.00 g, 53.4 mmol) in acetone (100 mL) and aqueous NaOH solution (2M, 100 mL) at 0 °C, acryloyl chloride (10 mL, 11.14 g, 118.2 mmol, 2.2eq) was added dropwise over a period of 30 min and the mixture was left to react for 1 h at r.t. Acetone was removed in the rotavap, upon which a white solid appeared. The solid was filtered and washed with NaOH 2M (1 x) and H₂O (2 x). After recrystallization from hexane:EtOAc 3:1, 13.8 g (85%) of the title compound were isolated as a white solid. ¹H NMR (400 MHz, DMSO) δ 10.13 (s, 1H, NH), 7.67 (d, *J* = 7.6 Hz, 2H, Ar-H), 7.32 (t, *J* = 7.9 Hz, 2H, Ar-H), 7.07 (t, *J* = 7.4 Hz, 1H, Ar-H), 6.44 (dd, *J* = 17.0, 10.1 Hz, 1H, CH=CH₂), 6.26 (dd, *J* = 17.0, 2.0 Hz, 1H, CH₂=CH), 5.75 (dd, *J* = 10.1, 2.0 Hz, 1H, CH₂=CH).

4AmBA

OH

To a solution of 4-aminobutanoic acid (5.12 g, 48.1 mmol) in an aqueous NaOH solution (2M, 126 mL) at 0 °C, acryloyl chloride (13 mL, 14.48 g, 153.6 mmol, 2.3 eq) was added dropwise over a period of 30 min and the mixture was left to react for 1 h at r.t. The pH of the final solution was adjusted to 1 using an aqueous HCl solution (1M). The aqueous phase was saturated with NaCl, washed with CHCl₃ (3 x) and extracted with EtOAc (4 x). The combined EtOAc extracts were washed with NaCl (3 x) and H₂O (2 x). The organic phase was dried, and its volume reduced in the rotavap until a white precipitate appears. The solid was allowed to precipitate in the freezer overnight, filtered, washed with cold EtOAc and dried under vacuum, to yield 3.60 g (40%) of the title compound as a white solid. ¹H NMR (400 MHz, DMSO) δ 12.06 (s-broad, 1H, COOH), 8.08 (s-broad, 1H, NH), 6.19 (dd, *J* = 17.1, 10.0 Hz, 1H, CH=CH₂), 6.06 (dd, *J* = 17.1, 2.3 Hz, 1H, CH₂=CH), 5.56 (dd, *J* = 10.0, 2.3 Hz, 1H, CH₂=CH), 3.13 (dd, *J* = 12.8, 6.9 Hz, 2H, CH₂-NH), 2.23 (t, *J* = 7.4 Hz, 2H, CH₂-COOH), 1.65 (m, 2H, CH₂). HRMS (TOF-ESI) Calcd for C₅H₆NO₃⁻ (M⁻): 128.0353 found: 128.0091.

Figure S02: 1H-NMR spectra of 4AmBA

Polymer Characterization

• poly(N-Phenylacrylamide) (p(PAm)-R) (P1)

Figure S03: ¹H-NMR spectra for the polymerization of **PAm** to yield **P1**. Top: Purified polymer. Bottom: Reaction mixture at the beginning of the polymerization.

Figure S04: Representative GPC elugrams for p(PAm)

Figure S05: Representative FTIR for P1. Red: Starting monomer PAm. Bottom: Purified polymer.

• poly(4-Acrylamidobutanoic acid) (p(4AmBA)-R) (P2)

Figure S06: ¹H-NMR spectra for the polymerization of **4AmBA** to yield **P2**. Top: Purified polymer. Bottom: Reaction mixture at the beginning of the polymerization.

Figure S07: Left: Representative linear plot of Ln[M]₀/[M]_t vs time (solid) and plot of conversion vs time (dashed). Right: Representative plot of calculated Mw vs conversion (solid) and PDI vs Conversion (dashed). Conditions: 70 °C; [4AmBA]=0.75 M; [4AmBA]/[CTA3]=30; [CTA1]/[V-501]=10; H₂O/EtOH.

Figure S08: Representative GPC elugram for p(4AmBA).

Figure S09: Representative FTIR for P2. Red: Starting monomer 4AmBA. Bottom: Purified polymer.

• poly(4-Acrylamidobutanoic acid)-block-poly(N-Phenylacrylamide)-RAFT (p(4AmBA)-b-p(PAm)-R)

Figure S10: ¹H-NMR spectra for the polymerization of **PAm** to yield (**p(4AmBA)-b-p(PAm)-R)**. Top: Reaction mixture at the beginning of the polymerization. Bottom: Purified polymer.

Figure S11: Left: Representative linear plot of $Ln[M]_0/[M]_t$ vs time (solid)and plot of conversion vs time (dashed) of the polymerisation of **4AmBA**. Conditions: 70 °C; **[4AmBA]**=1.6 M; **[P1c]**/**[4AmBA]**=36; **[P1c]**/ **[V-501]**=3; DMF. Right: Representative linear plot of $Ln[M]_0/[M]_t$ vs time (solid) and plot of conversion vs time (dashed) of the polymerisation of **PAm**. Conditions: 70 °C; **[PAm]**=0.5 M; **[P2a]**/**[PAm]**=55; **[P2a]**/**[V-501]**=4; DMSO.

Figure S12: Representative FTIR for P3.

General Protocol for the esterification of P3

In a typical experiment, to a solution of **P3** (50 mg, 2.3 μ mol (62.8 μ mol **4AmBA**), 50 mg/ mL) in EtOH (1 mL), SOCl₂ (45 μ l, 74 mg, 610 μ mol) was added. The reaction was carried out overnight at room temperature. The title compound was purified by precipitation into Pet Ether:Et₂O 1:1 and recovered as a white powder (50 mg, quantitative yield) after freeze-drying from water (dark, 2 days).

Figure S13: Representative comparison of GPC elugrams before and after esterification of the acid groups in **P3** (**P3b**). Multiangle detection was used in this case and both RI and LS traces are shown.

P3a 200 m 500 nm 200 nm 500 nm 500 nm 55 m P3b 500 nm 200 m 100 mm 100 mm 55 55 55 rm 55 P3c 200 mm •. P3d 200 nm 100 nm 200 mm 200 mm 200 m P3e 500 nm 100 nm 100 nm 100 nm 35 m 35 nm 55 nm 7m P3f 500 m 500 500 r 1µm 500

AFM

Figure S14: Representative AFM topography images for self-assembled structures of **P3**. 5 mg/mL of **P3** for vesicle preparation.

ТЕМ

P3a	100 nm 100 nm 2 µm
P3b	20 nm
P3c	2 µm 100 nm 100 nm 100 nm
P3d	50 nm 50 nm 50 nm 100 nm
P3e	100 nm 100 nm 100 nm 500 nm
P3f	100 nm 100 nm 500 nm

Figure S15: Representative TEM Micrographs for the self-assembled structures of **P3**. 5 mg/mL of **P3** for vesicle preparation.

Vesicle Stability

Figure S16: Representative DLS data for vesicle stability at different pH. Experiments carried out with **P3b** in 10 mM HEPES, 100 mM NaCl. 10 mg/mL of **P3** for vesicle preparation.

Figure S17: Percentage of CF released after incubating vesicles o.n. in the presence of different salts at different concentrations. Experiments carried out with **P3b** in 10 mM HEPES, 100 mM NaCl. 10 mg/mL of **P3** for vesicle preparation.

Page 12 of 15

Figure S18: Representative DLS data for vesicle solution in the presence of 100 mM of the appropriate salt. Experiments carried out with **P3b** in 10 mM HEPES, 100 mM NaCl. 10 mg/mL of **P3b** for vesicle preparation.

Figure S19: Effect of **b-PEI** concentration on the stability of polymersomes. Experiments carried out with **P3c**. 15 mg/mL of **P3c** for vesicle preparation.

Uptake by 3T3 Fibroblasts

Figure S20: Representative fluorescent (top) and merged (bottom) micrographs of uptake of polymersomes by 3T3 fibroblasts.

Uptake by A549 cells

Figure S21: Uptake of polymersomes by A549 cells and representative fluorescent micrographs of unmodified (top) and **b-PEI** coated (bottom) polymersomes.

Figure S22: Brightfield images of A549 cells following a 60 min incubation in the absence (left) and presence (right) of **b-PEI** coated polymersomes. Experiments carried out with **P3c**.