Supplementary Information

Polyurethanes based on renewable polyols from bioderived lactones.

Senthil A. Gurusamy-Thangavelu,^{*a*} Susanna Emond,^{*a*} Aman Kulshrestha,^{*a*} Marc A. Hillmyer,^{*a*} Christopher W. Macosko,^{*b*} William B. Tolman^{*a*} and Thomas R. Hoye*^{*a*}

Departments of Chemistry and Chemical Engineering and Material Science,

University of Minnesota, Minneapolis, Minnesota 55455, USA

hoye@umn.edu

Contents

Contents of Supplementary Information	S1-S2
General Experimental Information	S3–S4
ESI-MS and GPC characterization data for lower MW polyols 4_{PM-9} and 8_{PCM-9}	S5-S8
Synthesis of higher MW polyols 4 _{PM-18} and 8 _{PCM-18}	S9
MALDI, GPC, and DSC (Figure S1) characterization data for 4_{PM-18} and 8_{PCM-18}	S10–S13
Protocol for NMR-based determination of molar mass of polyols 4 and 8 (Figure S2)	S14
Synthesis and spectroscopic characterization data for model amide/esters:	
9a-c (butanoyl derivatives of diethanolamine (3) and butyric anhydride)	S15-S16
• Interpretation of ¹ H NMR data for the model compounds 9a-c (Table S1)	S17
10a-c (monoamide, monoamide/monoester, and monoamide/diester from $2 + 3$)	S18-S19
• Interpretation of ¹ H NMR data for the model compounds 10a-c	S19
11a-c (triacetate derivatives from 10a-c + acetic anhydride)	S20-S21
S1a-c (monoamide, monoamide/monoester, and monoamide/diester from $cis-7+3$) S22-S23
S2a-c (triacetate derivatives from S1a-c + acetic anhydride)	S24-S25
S3a-c (monoamide, monoamide/monoester, monoamide/diester from <i>trans</i> -7 + 3)	S26-S27
S4a-c (triacetate derivatives from S3a-c + acetic anhydride)	S28-S29
Preparation of PU films (entries 2-8, Table 3in manuscript)	S30
Characterization data for PU films in entries 1-8, Table 3 in manuscript	
Representative ATR-IR of a film (PU[4 _{PM-9} /MDI])	S31
DSC (Figure S3)	S32
DMA (T vs. E'' data)	S33-S42
Tensile Strength	S43-S46

Copies of NMR Spectra	
¹ H and ¹³ C spectra of polyol 4_{PM-9}	S47–S48
¹ H and ¹³ C spectra of polyol 8_{PCM-9}	S49–S50
¹ H and ¹³ C spectra of polyol 4_{PM-18}	S51–S52
¹ H and ¹³ C spectra of polyol 8_{PCM-18}	S53–S54
¹ H and ¹³ C spectra of monoamide 9a	S55–S56
¹ H and ¹³ C spectra of monoamide/monoester 9b	S57–S58
¹ H and ¹³ C spectra of monoamide/diester 9c	S59–S60
¹ H and ¹³ C spectra of monoamide 10a	S61–S62
COSY of monoamide 10a	S63
¹ H and ¹³ C spectra of monoamide/monoester 10b	S64–S65
¹ H and ¹³ C spectra of monoamide/diester 10c	S66–S67
1 H and 13 C spectra of 11a (triacetate derivative of 10a)	S68–S69
COSY of triacetate 11a	S70
¹ H and ¹³ C spectra of 11b (triacetate derivative of 10b)	S71–S72
¹ H and ¹³ C spectra of 11c (triacetate derivative of 10c)	S73–S74
¹ H and ¹³ C spectra of monoamide S1a	S75–S76
¹ H and ¹³ C spectra of monoamide/monoester S1b	S77–S78
¹ H and ¹³ C spectra of monoamide/diester S1c	S79–S80
¹ H and ¹³ C spectra of S2a (triacetate derivative of S1a)	S81–S82
¹ H and ¹³ C spectra of S2b (triacetate derivative of S1b)	S83–S84
¹ H NMR spectrum of S2c (triacetate derivative of S1c)	S85
¹ H and ¹³ C spectra of monoamide S3a	S86–S87
COSY of monoamide/diester S3a	S88
¹ H and ¹³ C spectra of monoamide/monoester S3b	S89–S90
¹ H and ¹³ C spectra of monoamide/diester S3c	S91–S92
COSY of monoamide/diester S3c	S93
¹ H and ¹³ C spectra of S4a (triacetate derivative of S3a)	S94–S95
COSY of triacetate S4a	S96
¹ H and ¹³ C spectra of S4b (triacetate derivative of S3b)	S97–S98
¹ H and ¹³ C spectra of S4c (triacetate derivative of S3c)	S99–S100

General Experimental Information

Materials and Methods

(note: the first five paragraphs below are identical to those in the published manuscript)

All glassware was dried in an oven at 150 °C prior to use. All air/moisture sensitive experiments were carried out under a static pressure of dry nitrogen in a glove box. Anhydrous dichloromethane (DCM) and toluene were obtained by passing the commercial grade solvent through an activated alumina column. Toluene was degassed using a freeze-pump-thaw method. Ethanol, chloroform, starting materials, and reagents were used as received from the commercial sources unless indicated otherwise.

NMR spectra were recorded on a 500 or 300 MHz Varian Inova NMR spectrometers. Proton chemical shifts are referenced to internal TMS (δ 0.00) for spectra recorded in CDCl₃ and to residual CHD₅ (δ 7.16) for spectra recorded *d*₆-benzene. Carbon chemical shifts are referenced to ¹³CDCl₃ (δ 77.0) for spectra recorded in CDCl₃. Molar masses determined by NMR analysis were calculated as shown in Figure S2. Infrared spectra were recorded on a MIDAC 2000 FTIR spectrometer in ATR mode.

Molar masses (M_N and M_w) determined by SEC analysis are based on polystyrene standards. Chloroform was the mobile phase and the flow rate was 1.0 mL/min at 35 °C using three Jordi poly(divinylbenzene) columns of 100, 100, and 500 Å pore size and a differential refractometer. The differential refractive index increment (dn/dc) was determined by pumping chloroform solutions of the polymers of known concentration through the Wyatt Technology Corp. Optilab DSP interferometric refractometer, with a wavelength of 633 nm and a temperature of 25 °C throughout the measurement.

GC-MS experiments were conducted on an Agilent Technologies 6890N GC system and 5975 inert XL mass selective detector. Differential scanning calorimetry (DSC) measurements were performed using a Discovery DSC Instrument under a nitrogen atmosphere. The polymer samples were heated to 200 °C, held for 5 min, cooled to -50 °C, held for 5 min, and then reheated to 200 °C. The rate of both heating and cooling was 10 °C/min. The values reported were obtained from the second heating cycle. An indium standard was used for calibration. Samples weighing 2.0-7.0 mg were loaded into aluminum pans.

(–)-Menthide (1) and carvomenthide (2) were synthesized by Baeyer-Villiger oxidation of menthone and carvomenthone, respectively, according to a literature protocol. Dihydrocarvone, *m*-chloroperoxybenzoic acid (MCPBA), and diethylene glycol were commercial samples and were used as received. Tin(II) octoate $[Sn(O_2CCH(Et)Bu)_2]$ was obtained from Aldrich and doubly vacuum distilled prior to use. Methylenediphenyl diisocyanate (MDI; Suprasec 3050; ca. 50:50 4,4'- and 2,4'-isomers with a few% of the 2,2'-isomer) and polymeric-MDI [PMDI; Rubinate[®] M; MW ca. 325 (i.e., functionality ca. 2.6); specified equiv wt: 135] were obtained from Huntsman.

ESI-MS data were collected from a Bruker-BioTof II (ESI-TOF) mass spectrometer using PEG as an internal standard. Samples were prepared from a solution of polyol in chloroform diluted with methanol and filtered through a PTFE (0.45 μ m) syringe filter before injection.

MALDI-TOF MS data were collected from a Bruker Reflex III MALDI-TOF instrument operating in the reflectron mode. Each higher molecular weight (i.e., ca. 3 kg•mol⁻¹) polyol

Supplementary Information

sample was dissolved in chloroform (ca. 5 mg•mL⁻¹). The matrix material (2,5-dihydroxy benzoic acid) was dissolved in methanol (ca. 1 M). Solutions of matrix (10 μ L) and sample (5 μ L) were mixed with a micropipette and a drop was placed in a well of a MALDI target sample holder and allowed to evaporate.

Dynamic mechanical analysis of the PU films was measured with an RSA-2 rheometer (Rheometric Scientific, Piscataway, NJ). Films (ca. 0.5 mm thick) were cut to a rectangular shape (ca. 35 mm long and ca. 5 mm wide). A dynamic strain sweep test was performed at ambient temperature and a dynamic temperature ramp test was then carried out across a temperature range of -60 to 160 °C with a ramp rate of 3 °C min⁻¹. The T_g value was measured from the graph of T vs. loss modulus (E"). The software Origin 8.5 version was used to plot the data collected from this study.

Tensile testing of PU films was conducted using a MiniMat material tester (Rheometrics Scientific). A dogbone-shaped sample having an area of analysis of ca. $12 \times 3 \text{ mm l} \times w$ and ca. 0.5 mm thickness was mounted between the stable and mobile grip. Tensile testing was carried out at a cross-head speed of 36 mm•min⁻¹. Reported values are averages and standard deviations of at least three samples. MiniMat software was used to calculate the parameters provided in Table 3.

ESI-MS characterization data for each of the two lower MW polyols $4_{\text{PM-9}}$ and $8_{\text{PCM-9}}$. pp S5-S6

ESI-4_{PM-9}

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2012

Gurusamy-Thangavelu

Supplementary Information

ESI-8_{PCM-9}

page S7 of S100

GPC-4_{PM-9}

Supplementary Information

GPC-8_{PCM-9}

page S8 of S100

Elution Volume (ml)

Supplementary Information

Synthesis of higher MW polyols 4_{PM-18} and 8_{PCM-18} Synthesis of (–)-menthide-based polyol 4_{PM-18}

A glass pressure vessel was charged with an 18:1 molar ratio of (–)-menthide (**2**, 6.0 g, 35 mmol) and distilled diethanolamine (**3**, 0.21 g, 2.0 mmol) under a nitrogen atmosphere in a glove box. A solution of distilled tin(II) octoate (57 mg, 0.14 mmol) dissolved in anhydrous toluene (1.1 mL) was added. The vessel was closed and removed from the glove box. The reaction mixture was stirred and heated in an oil bath maintained at 140 °C for 48 h and then cooled to room temperature. Pentane (5 mL) was added, the resulting mixture was triturated for several minutes, and the top pentane layer was removed with a pipette. This pentane washing procedure was repeated three times. The resulting viscous liquid was dissolved in anhydrous methylene chloride (3 mL) and magnetically stirred. Pentane (30 mL) was slowly added. The top transparent layer was carefully separated from the denser layer; the latter was dried under vacuum (several h at ambient temperature) to afford polyol **4**_{PM-18} (5.0 g, 77 %) as a transparent viscous liquid. By ¹H NMR analysis, this sample was estimated to contain ca. 6% of the unreacted monomer **2**.

Spectral data for 4_{PM-18}:

¹H-NMR (500 MHz, CDCl₃): δ 4.75-4.69 (m), 4.24-4.11 (m), 3.66-3.54 (m), 3.36-3.31 (m), 2.36-2.27 (m), 2.14-2.05 (m, 9H), 2.00-1.89 (m), 1.86-1.77 (m), 1.69-1.62 (m) 1.60-1.45 (m), 1.39-1.11 (m), and 0.98-0.87 (m).

 13 C-NMR (75 MHz, CDCl₃) δ 172.8, 78.2, 76.8, 41.9, 41.86, 33.3, 33.0, 32.5, 32.4, 31.4, 31.1, 31.0, 30.5, 30.26, 30.17, 28.4, 19.8, 19.7, 18.9, 18.6, 17.5, 17.4, and 17.0. (only resonances that are >10% of the intensity of the tallest are reported here).

Synthesis of carvomenthide-based polyol 8_{PCM-18}

A glass pressure vessel was charged with a 18:1 molar ratio of a mixture of trans- and ciscarvomenthide (7, 6.0 g, 35 mmol) and distilled diethanolamine (**3**, 0.21 g, 2.0 mmol) under a nitrogen atmosphere in a glove box. A solution of distilled tin(II) octoate (57 mg, 0.14 mmol) dissolved in anhydrous toluene (1.1 mL) was added. The vessel was closed and removed from the glove box. The reaction mixture was stirred and heated in an oil bath maintained at 140 °C for 72 h and then cooled to room temperature. Pentane (7 mL) was added, the resulting mixture was triturated for several minutes, and the top pentane layer was removed via a pipette. This pentane washing procedure was repeated three times. The resulting viscous liquid was dissolved in anhydrous methylene chloride (3 mL) and added dropwise to pentane (30 mL) that was being magnetically stirred at ambient temperature. Stirring was stopped after ca. 30 min and the resulting suspension was allowed to settle for ca. 1 h. The top transparent layer was carefully separated from the denser bottom layer; the latter was dried under vacuum (several hours at ambient temperature) to afford polyol **8**_{PCM-18} (4.8 g, 75%) as a viscous liquid. This sample contained ca. 10% of the unreacted monomer **7**.

Spectral data for 8_{PCM-18}**:**

¹H-NMR (500 MHz, CDCl₃): δ 4.91-4.79 (m), 4.29-3.93 (m), 3.82-3.72 (m), 3.68-3.42 (m), 2.31-2.20 (m), 2.16-2.08 (m), 1.80-1.66 (m), 1.63-1.53 (m), 1.51-1.12 (m), and 0.90-0.82 (m).

¹³C-NMR (75 MHz, CDCl₃) δ 173.4, 70.8, 40.7, 40.6, 40.5, 40.4, 36.8, 36.2, 33.4, 29.7, 29.6, 29.5, 26.5, 26.4, 23.4, 19.88, 19.85, 19.3, 19.2, 19.1, 18.6, 18.5, and 18.4. (only resonances that are >10% of the intensity of the tallest are reported here.)

MALDI-MS characterization data for each of the two higher MW polyols (i.e., $4_{PM\text{-}18}\,\text{and}\,8_{PCM\text{-}18}$). p S10

MALDI-4_{PM-18}

MALDI-8_{PCM-18}

GPC characterization data for each of the two higher MW polyols (i.e., $4_{PM\text{-}18}$ and $8_{PCM\text{-}18}$). pp S11-S12

Supplementary Information

page S12 of S100

Figure S1. Differential scanning calorimetry (DSC) data for the lower and the higher molar mass polyols 4_{PM} and 8_{PCM} .

Protocol for NMR-based determination of molar mass of polyols 4 and 8

We used the following procedure to calculate the molar mass of each polyol. It corrects for the incomplete initiation of the diethanolamine initiator. The protocol is described here for one representative sample–namely, 4_{PM-9} .

1. The ratio of polyols having a fully functionalized $(4_{PM-9-tris})$ vs. a non-fully functionalized $(4_{PM-9-tris})$ initiator unit was determined as follows:

Integration (Figure S2) of H1' for $4_{PM-9-bis} = 0.64$ Net integration of H1/1' for $4_{PM-9-tris} = 3.64-0.64 = 3.00$ Molar ratio of $4_{PM-9-tris}$ to $4_{PM-9-bis} = (3.00/2) : (0.64/1) = 1.50 : 0.64$. Thus, the sample of polyol 4_{PM-9} contained 30% of $4_{PM-9-bis}$.

- 2. The molar mass of $4_{PM-9-bis}$ was calculated as: [1+(H_n/H_e)]•2•(MW of monomer 2) + (MW of initiator 3) = (1 + 6.09/3)•2•170 + 105 = 1140
- 3. The molar mass of $4_{PM-9-tris}$ was calculated as: [1+(H_n/H_e)]•3•(MW of monomer 2) + (MW of initiator 3) = (1 + 6.09/3)•3•170 + 105 = 1650
- 4. The molar mass of the sample of 4_{PM-9} that comprises 30% of $4_{PM-9-bis}$ and 70% $4_{PM-9-tris}$ is: (1140•0.30) + (1650•0.70) = 340 + 1160 = 1500

Figure S2. Region of the ¹H NMR spectrum of the 4_{PM-9} used to determine the effective molar mass of that polyol.

Supplementary Information

Synthesis of monoamide 9a

A capped vial was charged with diethanolamine (1.0 g, 9.5 mmol) in anhydrous DCM (47 mL). To the above solution was added methyl butyrate¹ (0.88 g, 8.6 mmol) and pyridine (0.7 mL, 8.4 mmol). The latter mixture was heated at 70 °C overnight. Upon completion the reaction mixture was cooled to room temperature and the solvent was evaporated. The resulting crude material was passed through a plug of silica gel buffered with triethylamine (2% in hexane) and eluted with EtOAc to yield the monoamide **9a** (350 mg) as a transparent oil.

Spectral data for 9a:

¹H NMR (500 MHz, CDCl₃) δ 3.87 (t, 2H, J = 4.7 Hz, CH_2 OH), 3.80 (t, 2H, J = 4.9 Hz, CH_2 OH), 3.57 (t, 2H, J = 5.2 Hz, CH_2 N), 3.51 (t, 2H, J = 5.4 Hz, CH_2 N), 3.33 (bs, 1H, OH), 3.21 (bs, 1H, OH), 2.39 (t, 2H, J = 7.4 Hz, CH_2 C=O), 1.68 (sextet, 2H, J = 7.6 Hz, CH_2 Me), and 0.96 (t, 2H, J = 7.4 Hz, CH_3).

¹³C NMR (75 MHz, CDCl₃) δ 175.5, 61.9, 60.9, 52.1, 50.4, 35.5, 18.6, and 13.9.

IR (neat) 3391, 2935, 2875, 1616, 1471, 1422, 1207, 1070, and 913 cm⁻¹.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_8H_{17}NO_3Na]^+$ 198.1101, found 198.1096.

Synthesis of monoester 9b-I/9b-II and diester 9c.

Butyric anhydride (1.9 mL, 11.8 mmol) and pyridine (1.1 mL, 13.1 mmol) were added to a Teflon sealed tube charged with diethanolamine (0.7 g, 6.6 mmol) and anhydrous DCM (33 mL). The resulting solution was stirred at room temperature for 6 h and the reaction mixture was subjected to rotary evaporation. The ¹H NMR spectrum of the resulting crude material revealed an ca. 3:1 mixture of the monoester **9b** and diester **9c**. This mixture was purified via MPLC using hexane:ethyl acetate (2:1) to afford the monoester **9b-I/9b-II** (0.63 g) and the diester **9c** (0.56 g) as colorless oils.

Spectral data for 9b-I/9b-II (ca. 2:1 ratio):

¹H NMR (500 MHz, CDCl₃) (Major rotamer): δ 4.21 (t, 2H, J = 5.9 Hz, CH_2O_2C), 3.782 (t, 2H, J = 5.1 Hz, CH_2OH), 3.618 (t, 2H, J = 5.9 Hz CH_2N), 3.58 (t, 2H, J = 5.3 Hz, CH_2N), 2.376 [t, 2H, J = 7.3 Hz, $CH_2C(=O)N$], 2.307 [t, 2H, J = 7.4 Hz, $CH_2C(=O)O$], 1.692 (sextet, 2H, J = 7.4 Hz, CH_2Me), 1.656 (sextet, 2H, J = 7.4 Hz, CH_2Me), 0.978 (t, 3H, J = 7.4 Hz, CH_3), and 0.956 (t, 3H, J = 7.4 Hz, CH_3); (Minor rotamer): δ 4.27 (t, 2H, J = 5.6 Hz, CH_2O_2C), 3.779 (t, 2H, J = 7.4 Hz, CH_3O_2C), 3.779 (t, 2H,

¹ Westaway, K. C.; Lai, Z. G. Can. J. Chem. 1988, 66, 1263-1271.

5.9 Hz, CH_2OH), 3.623 (t, 2H, J = 5.6 Hz, CH_2N), 3.51 (t, 2H, J = 5.5 Hz, CH_2N), 2.367 [t, 2H, J = 7.5 Hz, $CH_2C(=O)N$], 2.292 [t, 2H, J = 7.4 Hz, $CH_2C(=O)O$], 1.648 (sextet, 2H, J = 7.4 Hz, CH_2Me), 1.663 (sextet, 2H, J = 7.4 Hz, CH_2Me), 0.956 (t, 3H, J = 7.4 Hz, CH_3), and 0.948 (t, 3H, J = 7.4 Hz, CH_3).

¹³C NMR (75 MHz, CDCl₃) δ 175.3, 174.1, 173.5, 173.3, 62.1, 61.5, 60.4, 50.9, 50.0, 47.7, 45.5, 36.0, 35.9, 35.1, 34.9, 18.61, 18.57, 18.25, 18.22, 13.8, and 13.6.

IR (neat) 3413, 2963, 2876, 1736, 1624, 1462, 1421, 1176, 1075, and 748 cm⁻¹.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{12}H_{23}NO_4Na]^+$ 268.1519, found 268.1547.

Spectral data for 9c:

¹H NMR (500 MHz, CDCl₃) δ 4.22 (t, 2H, J = 5.6 Hz, CH_2O_2C), 4.20 (t, 2H, J = 5.9 Hz, CH_2O_2C), 3.62 (t, 2H, J = 5.7 Hz, CH_2N), 3.61 (t, 2H, J = 6.1 Hz, CH_2N), 2.34 [t, 2H, J = 7.3 Hz, $CH_2C(=O)N$], 2.30 [t, 2H, J = 7.3 Hz, $CH_2C(=O)O$], 2.28 [t, 2H, J = 7.5 Hz, $CH_2C(=O)O$], 1.674 (sextet, 2H, J = 7.4 Hz, CH_2Me), 1.650 (sextet, 2H, J = 7.4 Hz, CH_2Me), 1.644 (sextet, 2H, J = 7.4 Hz, CH_2Me), 0.96 (t, 3H, J = 7.3 Hz, CH_3), 0.95 (t, 3H, J = 7.3 Hz, CH_3), and 0.94 (t, 2H, J = 7.4 Hz, CH_3).

¹³C NMR (75 MHz, CDCl₃) δ 173.32, 173.30, 173.22, 62.0, 61.5, 47.1, 45.2, 35.9, 35.8, 34.8, 18.5, 18.24, 18.20, 13.8, and 13.6.

IR (neat) 2964, 1738, 1649, 1468, 1176, 913, and 746 cm⁻¹.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{16}H_{29}NO_5Na]^+$ 338.1938, found 338.1923.

Interpretation of ¹H NMR data for the model compounds 9a-c

The two amide rotamers for each of the symmetrical compounds **9a** and **9c** are degenerate (and, therefore, equally populated). The former, a monoamide diol, gives rise to seven distinct sets of proton resonances. The latter, a monoamide diester, shows 13 unique resonances, albeit some having nearly identical proton chemical shifts. The unsymmetrical monamide/monoester **9b-I/9b-II** comprises a pair of energetically non-degenerate (and, therefore, non-equally populated–an ca. 2:1 ratio) rotamers. Twenty chemically distinct sets of protons (16 methylene pairs and 4 methyl groups) are present in the spectrum of this pair of rotamers, and all but two sets were identifiable. With respect to understanding the spectra of the deithanolamine-initiated polyol **4** (and **8**), the most essential points taken from the chemical shifts observed for this set of model amide/alcohol/esters are: i) slow amide rotation leads to a doubling of the resonances for each of the otherwise identical set of methylene or methyl protons, ii) esterified methylene protons in the initiator moiety (H1 and H1²) have chemical shifts in the range of δ 4.20-4.30 ppm, iii) amido-bearing methylene protons in the initiator moiety (H2 and H2²) have chemical shifts in the range of δ 3.50-3.65 ppm, and iv) free carbinol methylene protons in the initiator moiety (H1 and H1²) have chemical shifts in the range of δ 3.75-3.90 ppm.

Table S1. Proton NMR data and assignments for the model butanoylated amide/esters **9a-9c**. The two amide rotamers are of identical energy for the symmetrical diol **9a** and diester **9c**, but are unequally populated for the mono-ester **9b-I/9b-II**.

^{a-i} The assignments of resonances carrying the same lettered superscript are uncertain with respect to one another.

Synthesis of model amide esters 10a-c derived from diethanolamine (3) and menthide (2)

In a typical experiment, the appropriate quantities of diethanolamine (1 equiv) and lactone (3 equiv) were weighed directly into a culture tube. The vessel was then sealed and heated for 2-4 hours (conversion was monitored by LC/MS). The crude reaction mixture was loaded directly onto an MPLC column and eluted with ethyl acetate containing 1% methanol. The compounds eluted in the following order and had the indicated composition: unreacted lactone (\sim 30-45%), the monoamide diester (\sim 5-10%), the monoamide monoester (\sim 20-25%), and the monoamide diol (\sim 20-25%).

Spectral data for monoamide 10a

¹H NMR (500 MHz, CDCl₃) δ 3.81 (ddd, J = 11.0, 6.8, 3.7 Hz, 1H, H1), 3.77 (ddd, J = 11.6, 5.9, 3.9 Hz, 1H, H1*), 3.74 (br t, J = 5.1 Hz, 2H, H1'), 3.56 (ddd, J = 14.2, 5.7, 3.7 Hz, 1H, H2), 3.54 (ddd, J = 15.2, 5.2, 5.2 Hz, 1H, H2*), 3.48 (ddd, J = 14.2, 6.8, 3.9 Hz, 1H, H2'), 3.43 (ddd, J = 15.1, 5.2, 5.2 Hz, 1H, H2'*), 3.27 (ddd, J = 7.9, 5.2, 2.6 Hz, 1H, H_e), 2.36 (dd, J = 15.0, 7.6 Hz, 1H, H_a), 2.26 (dd, J = 15.0, 6.5 Hz, 1H, H_a*), 2.08-1.99 (m, 1H, H_b), 1.63 (dqq, J = 6.8, 6.8, 6.8 Hz, 1H, H_f), 1.56-1.52 (m, 2H, H_c/H_d), 1.33-1.24 (m, 1H, H_c*), 1.15-1.08 (m, 1H, H_d*), 0.94 (d, J = 6.8 Hz, 3H, H_i), 0.89 (d, J = 6.8 Hz, 3H, H_h), and 0.88 (d, J = 6.8 Hz, 3H, H_g). Proton assignments were based upon and/or are consistent with the COSY spectral data (copy provided below).

¹³C NMR (125 MHz, CDCl₃) δ 175.0, 77.2, 60.9, 60.7, 52.4, 50.5, 41.1, 33.9, 33.5, 31.8, 31.0, 20.4, 19.0, and 17.5.

IR (neat): 3550-3250, 2956, 2874, 1617, 1465, 1421, and 1054.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{14}H_{29}NO_4Na]^+$ 298.1989, found 298.1959.

Spectral data for monoester 10b

¹H NMR (500 MHz, CDCl₃) δ 4.25 (ddd, J = 11.1, 5.6, 5.6 Hz, 1H, H1), 4.21 (ddd, J = 11.1, 5.9, 5.9 Hz, 1H, H1*), 3.77+ (ddd, J = 12.1, 5.6, 5.6 Hz, 1H, H1'), 3.77- (ddd, J = 12.1, 5.8, 5.8 Hz, 1H, H1'*), 3.70-3.46 (m, 4H, H2/H2*/H2'/H2'*), 3.32+ (ddd, J = 8.6, 5.2, 2.6 Hz, 1H, H_e), 3.32- (ddd, J = 8.6, 5.2, 2.7 Hz, 1H, H_e), 2.39 (dd, J = 15.1, 6.7 Hz, 1H, H_a), 2.30, (dd, J = 14.9,

6.7 Hz, 1H, H_a'), 2.26 (dd, J = 15.5, 7.5 Hz, 1H, H_a'*), 2.20, (dd, J = 15.8, 7.3 Hz, 1H, H_a*), 2.10-2.02 (m, 1H, H_b), 1.99-1.91 (m, 1H, H_b'), 1.68-1.61 (m, 2H, H_f/H_f'), 1.60-1.49 (m, 4H, H_c/H_d/H_c'/H_d'), 1.38-1.25 (m, 2H, H_c*/H_c'*), 1.23-1.12 (m, 2H, H_d*/H_d'*), 0.98 (d, J = 6.6 Hz, 3H, H_i'), 0.96 (d, J = 6.7 Hz, 3H, H_i), 0.92 (d, J = 6.8, 6H, H_g, H_g'), and 0.91 (d, J = 6.9 Hz, 6H, H_h/H_h').

¹³C NMR (125 MHz, CDCl₃) δ 174.5, 173.7, 173.2, 173.0, 77.0, 76.8, 76.7, 62.3, 61.6, 61.2, 60.2, 51.0, 49.5, 47.9, 45.8, 41.82, 41.76, 40.5, 40.4, 33.64, 33.61, 33.6, 33.4, 33.1, 31.7, 31.64, 31.60, 31.55, 30.9, 30.69, 30.67, 30.62, 20.3, 20.2, 19.99, 19.94, 18.97, 18.94, 17.35, 17.29, and 17.24.

IR (neat) 3600-3200 (OH), 2957, 2873 (NH), 1734 (ester CO), 1623 (amide CO), 1461, 1419, 1383 (OH), 1201, 1201, 1163, 1058, and 999 cm⁻¹.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{14}H_{47}NO_6Na]^+$ 468.3295, found 468.3345.

Spectral data for diester 10c

¹H NMR (500 MHz, CDCl₃) δ 4.22 (t, *J* =5.6 Hz, 2H, H1/H1*), 4.21 (dd, *J* = 11.6, 5.8 Hz, 1H, H1'), 4.18 (dd, *J* = 11.7, 5.9 Hz, 1H, H1'*), 3.61 (t, *J* = 5.6 Hz, 4H, H2/H2'/H2*/H2'*), 3.36-3.28 (m, 3H, H_e/H_{e'}/H_{e''}), 2.39 (dd, *J* = 15.1, 6.7 Hz, 1H, H_a), 2.34 (dd, *J* = 14.9, 6.7 Hz, 1H, H_{a'}/H_{a''}), 2.24 (dd, *J* = 15.5, 7.5 Hz, 1H, H_{a'*}), 2.21 (dd, *J* = 15.8, 7.3 Hz, 1H, H_{a'*}), 2.18 (dd, *J* = 15.8, 7.3 Hz, 1H, H_a*), 2.10-2.02 (m, 1H, H_b), 1.98-1.89 (m, 2H, H_{b'}/H_{b''}), 1.68-1.62 (m, 3H, H_f/H_{f'}/H_{f'}), 1.59-1.48 (m, 6H, H_c/H_d/H_{c'}/H_{d'}/H_{c''}/H_{d''}), 1.38-1.27 (m, 3H, H_{c*}/H_{c'*}/H_{c'*}), 1.22-1.12 (m, 3H, H_{d*}/H_{d'*}/H_{d'*}), 0.96 (d, *J* = 6.6 Hz, 3H, H_i), 0.95 (d, *J* = 6.7 Hz, 3H, H_i), 0.92 (d, *J* = 6.8, 9H, H_g, H_{g'}, H_{g'}), and 0.91 (d, *J* = 6.9 Hz, 9H, H_h, H_{h'}, H_{h'}).

¹³C NMR (125 MHz, CDCl₃) δ 173.3, 173.1, 173.0, 77.2, 76.93, 76.88, 62.1, 61.6, 47.3, 45.4, 41.8, 41.7, 40.5, 33.7, 33.66, 33.63, 33.23, 33.21, 31.8, 31.7, 31.6, 30.75, 30.71, 31.66, 20.3, 20.1, 20.0, 19.1, 19.0, 17.34, 17.30, and 17.27.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{34}H_{65}NO_8Na]^+$ 638.4602, found 638.4630.

Discussion of additional details associated with the interpretation of ¹H NMR data for the model compounds 10a-c.

General features are: i) overlapping resonances arising from the diastereotopic sets of protons alpha to the amide moiety are centered at δ 2.39, δ 2.18 (H_a, H_a*), and those from the ester range between δ 2.34-2.21 (H_a', H_a*' and H_a", H_a*"). ii) broad multiplets ranging between δ 2.10-2.03 (H_b) and 1.99-1.91 (H_b' and H_b") result from the β -methine protons embedded in different environments iii) diastereotopic protons γ and δ to the carbonyls give rise to the overlapping multiplets ranging between δ 1.59-1.48 (H_c-H_c", H_d-H_d"), 1.38-1.27 (H_d*-H_d*"), and 1.22-1.12 (H_c*-H_c*"). iv) isopropyl methine protons lead to the overlapping resonances ranging from δ 1.68–1.62 (H_f-H_f"). v) and methyl protons in the backbone give rise to the resonances ranging from δ 0.91-0.96.

Acetylation of amide alcohols.

In a typical experiment the isolated model triol (~50 mg) was dissolved in pyridine and acetic anhydride (1:1, 0.5 mL). The reaction mixture was stirred at rt for 30 minutes and then partitioned between water and ethyl acetate. The organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by MPLC (ca. 1:1 Hexanes:EtOAc) to give the acetylated derivatives (yields ca. 80%).

Spectral data for monoamide triacetate 11a

¹H NMR (500 MHz, CDCl₃) δ 4.71 (dddd, J = 13.8, 11.7, 4.7, 4.7 Hz, 1H, H_e), 4.21+ (dt, J = 11.3, 5.7 Hz, 1H, H1), 4.21- (dt, J = 11.3, 5.6 Hz, 1H, H1'), 4.18+ (dt, J = 11.6, 6.1 Hz, 1H, H1*), 4.18- (dt, J = 11.6, 5.9 Hz, 1H, H1'*), 3.61 (brt, J = 5.5 Hz, 2H, H2/H2*), 3.60 (brt, J = 6 Hz, 2H, H2'/H2'*), 2.31 (dd, J = 15.1, 5.5 Hz, 1H, H_a), 2.18 (dd, J = 15.1, 8.2 Hz, 1H, H_a*), 2.08 (s, 3H, -O₂CCH₃), 2.06 (s, 3H, -O₂CCH₃), 2.05 (s, 3H, -O₂CCH₃), 2.04-1.98 (m, 1H, H_b), 1.81 (dsept, J = 6.6 Hz, 1H, H_f), 1.59 (dddd, J = 13.8, 11,7, 4.7, 4.7 Hz, 1H, H_d), 1.49 (dddd, J = 13.6, 11.4, 8.5, 4.7 Hz, 1H, H_d*), 1.35 (dddd, J = 13.3, 11.8, 5.0, 5.0, 1H, H_c), 1.14 (dddd, J = 13.0, 11.4, 7.9, 4.9 Hz, 1H, H_c*), 0.94 (d, J = 6.6 Hz, 3H, H_i), 0.89 (d, J = 6.8 Hz, 3H, H_g), and 0.885 (d, J = 6.8 Hz 3H, H_h).Proton assignments were based upon and/or are consistent with the COSY spectral data (copy provided below).

¹³C NMR (125 MHz, CDCl₃) δ 172.9, 171.3, 171.0, 170.8, 78.8, 62.5, 62.0, 47.5, 45.7, 40.4, 33.1, 31.5, 30.6, 29.0, 21.4, 21.1, 21.0, 20.1, 18.8, and 17.7.

IR (neat) 2960, 1738, 1646, 1460, 1421, 1371, 1236, 1047, and 1027 cm⁻¹.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{20}H_{35}NO_7Na]^+$ 424.2305, found 424.2311.

Spectral data for monoester triacetate 11b

¹H NMR (500 MHz, CDCl₃) δ 4.74-4.68 (m, 2H, H_e/H_e'), 4.21 (ddd, *J* = 5.7, 5.7, 2.2, 2H, H1/H1*), 4.18 (ddd, *J* = 6.3, 6.3, 2.8, 2H, H1'/H1'*), 3.66-3.54 (m, 4H, H2/H2*/H2'/H2*), 2.32 (dd, *J* = 15.0, 5.7 Hz, 1H, H_a), 2.31 (dd, *J* = 15.1, 5.7 Hz, 1H, H_a'), 2.18 (dd, *J* = 15.0, 8.4 Hz, 1H, H_a*), 2.12 (dd, *J* = 15.1, 8.4 Hz, 1H, H_a*), 2.05 (2, 9H, -CO₂CH₃), 2.04-1.98 (m, 1H, H_b),

1.95-1.88 (m, 1H, H_b'), 1.85-1.77 (m, 2H, H_f/H_f), 1.63-1.53 (m, 2H, H_d/H_d'), 1.52-1.44 (m, 2H, H_d*/H_d'*), 1.40-1.25 (m, 2H, H_c/H_c'), 1.22-1.11 (m, 2H, H_c*/H_c'*), 0.94 (d, J = 6.6 Hz, 3H, H_i), 0.93 (d, J = 6.6 Hz, 3H, H_i'), 0.89 (d, J = 6.8 Hz, 6H, H_g/H_g'), and 0.88 (d, J = 6.8 Hz, 6H, H_h/H_h')

¹³C NMR (125 MHz, CDCl₃) δ 172.92, 172.87, 172.8, 171.2, 171.14, 171.13, 170.9, 170.7, 78.7, 78.6, 78.5, 62.4, 62.2, 61.9, 61.7, 47.42, 47.40, 45.70, 45.65, 41.6, 41.5, 40.31, 40.27, 33.0, 32.99, 32.6, 31.4, 31.3, 30.6, 30.5, 30.43, 30.41, 28.92, 28.91, 28.6, 21.2, 21.0, 20.9, 19.98, 19.97, 19.8, 18.75, 18.72, and 17.6.

IR (neat) 2960, 2876, 1733, 1649, 1460, 1419, 1372, 1240, 1048, and 1022 cm⁻¹.

HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{30}H_{53}NO_9Na]^+$ 594.3612, found 594.3645.

Spectral data for diester triacetate 11c

¹H NMR (500 MHz, CDCl₃) δ 4.74-4.68 (m, 3H, H_e/H_{e'}/H_{e''}), 4.20 (app q, *J* = 5.8 Hz, 2H, H1/H1*), 4.18 (app q, *J* = 6 Hz, 2H, H1'/H1'*), 3.61 (t, *J* = 5.8 Hz, 2H, H2/H2*), 3.60 (app q, *J* = 6.1 Hz, 2H, H2'/H2'*), 2.32 (dd, *J* = 15.1, 5.6 Hz, 1H, H_a), 2.306 (dd, *J* = 15.1, 5.5 Hz, 1H, H_{a'}), 2.301 (dd, *J* = 15.1, 5.5 Hz, 1H, H_{a''}), 2.18 (dd, *J* = 15.1, 8.4 Hz, 1H, H_a*), 2.10 (dd, *J* = 15.1, 8.5 Hz, 1H, H_{a'*}), 2.09 (dd, *J* = 15.0, 8.5 Hz, 1H, H_{a''*}), 2.05 (s, 9H, -O₂CCH₃), 2.04-1.97 (m, 1H, H_b), 1.96-1.88 (m, 2H, H_{b'}/H_{b''}), 1.86-1.77 (m, 3H, H_f/H_f/H_{f''}), 1.63-1.53 (m, 3H, H_d*/H_{d''*}/H_{d''*}), 1.40-1.27 (m, 3H, H_c/H_{c''}/H_{c''}), 1.22-1.11 (m, 3H, H_c*/H_{c'*}/H_{c''*}), 0.94 (d, *J* = 6.6 Hz, 3H, H_i), 0.93 (d, *J* = 6.6 Hz, 6H, H_i/H_{i''}), 0.890 (d, *J* = 6.8 Hz, 9H, H_g, H_g/H_{g'}), and 0.887 (d, *J* = 6.8 Hz, 9H, H_h/H_{h'}/H_{h''}).

¹³C NMR (125 MHz, CDCl₃) δ 172.9, 172.84, 172.81, 171.22, 171.18, 171.64, 78.8, 78.62, 78.59, 62.2, 61.8, 47.4, 45.7, 41.6, 41.5, 40.4, 33.1, 32.6, 31.43, 31.40, 30.6, 30.50, 30.47, 29.0, 28.7, 21.34, 21.33, 20.0, 19.9, 18.82, 18.79, and 17.6.

IR (neat) 2961, 2875, 1733, 1650, 1461, 1373, 1243, 1167, and 1021 cm⁻¹. HRMS (ESI) (m/z): $[M+Na]^+$ calculated for $[C_{40}H_{71}NO_{11}Na]^+$ 764.4919, found 764.4949.

page S22 of S100

The remaining compounds–S1 to S4–are unique to the SI; that is, they were not specifically shown in the manuscript.

Synthesis of model amide esters S1a-c derived from diethanolamine (3) and *cis*-carvomenthide (cis-7).

Spectral data for S1a (monoamide derived from cis carvomenthide)

¹H NMR (500 MHz, CDCl₃) δ 3.92 (ddd, J = 11.0, 7.3, 3.3 Hz, 1H, H1), 3.89-3.84 (m, 1H, H_e), 3.81 (ddd, J = 11.0, 6.0, 3.5 Hz, 1H, H1*), 3.79 (t, J = 5.1 Hz, 2H, H1'/H1'*), 3.67 (ddd, J = 14.4, 6.1, 3.3 Hz, 1H, H2), 3.62 (ddd, J = 15.1, 5.2, 5.2 Hz, 1H, H2'), 3.46 (ddd, J = 14.2, 7.3, 3.4 Hz, 1H, H2*), 3.42 (ddd, J = 15.1, 5.0, 5.0 Hz, 1H, H2'*), 2.35 (dd, J = 15.5, 3.8 Hz, 1H, H_a), 2.26 (dd, J = 15.5, 9.9 Hz, 1H, H_a*), 1.99-1.93 (m, 1H, H_b), 1.72 (dsept, J = 4.3, 6.8 Hz, 1H, H_g), 1.50-1.34 (m, 4H, H_c/H_c*/H_d/H_d*), 1.17 (d, J = 7.3 Hz, 3H, H_f), 0.91 (d, J = 6.9 Hz, 3H, H_h), and 0.85 (d, J = 6.8 Hz, 3H, H_i).

¹³C NMR (125 MHz, CDCl₃) δ 175.7, 66.9, 60.8, 60.7, 52.4, 50.6, 39.2, 36.0, 34.5, 29.6, 26.9, 23.2, 20.5, and 18.4.

IR (neat): 3530-3100, 2959, 1617, 1464, 1421, 1368, 1128, and 1055 cm⁻¹.

Exact mass calc. for $[C_{14}H_{29}NO_4Na]^+$ 298.1989, found 298.1996.

Spectral data for S1b (monoamide monoester derived from cis-carvomenthide)

¹H NMR (500 MHz, CDCl₃) δ 4.34-4.10 (m, 2H, H1/H1*), 3.91-3.84 (m, 1H, H2), 3.82-3.43 (m, 7H, H1'/H1'*/H2*/H2'/H2'*/H_e/H_e'), 2.37 (dd, *J* = 15.5, 4.0 Hz, 1H, H_a), 2.35 (dd, *J* = 15.5, 4.9 Hz, 1H, H_a'), 2.22 (dd, *J* = 15.5, 9.6 Hz, 1H, H_a*), 2.12 (dd, *J* = 15.3, 9.1 Hz, 1H, H_a'*), 1.97-1.91 (m, 1H, H_b), 1.81-1.68 (m, 3H, H_b/H_g/H_g'), 1.49-1.21 (m, 8H, H_c/H_c*/H_d/H_d*/H_c'/H_c'*/H_d' H_d'*), 1.178 (d, *J* = 6.2 Hz, 3H, H_f or H_f'), 1.176 (d, *J* = 6.2 Hz, 3H, H_f or H_f'), 0.888 (d, *J* = 6.8 Hz, 3H, H_h or H_h'), 0.886 (d, *J* = 6.9 Hz, 3H, H_h or H_h'), 0.86 (d, *J* = 6.9 Hz, 3H, H_i or H_i').

¹³C NMR (125 MHz, CDCl₃) δ the spectral data for this mixture of two (inequivalently populated) rotamers is sufficiently complex that it is difficult to determine with confidence the appropriate set of resonances; a PDF copy of this spectrum is provided below.

IR (neat): 3580-3200, 2960, 1734, 1623, 1462, 1370, 1161, 1111, and 1066 cm⁻¹.

Exact mass calc. for $[C_{14}H_{47}NO_6Na]^+$ 468.3296, found 468.3294.

Spectral data for S1c (monoamide bisester derived from cis-carvomenthide)

¹H NMR (500 MHz, CDCl₃) δ 4.32-4.10 (m 4H, H1/H1*/H1'/H1'*), 3.91-3.84 (m, 1H, H_e), 3.82-3.49 (m, 6H, H2/H2*/H2'/H2'*/H_e'',H_e''), 2.343 (dd, *J* = 15.3, 5.1 Hz, 1H, H_a), 2.338 (dd, *J* = 15.5, 4.6 Hz, 1H, H_a'), 2.31 (dd, *J* = 15.1, 5.1 Hz, 1H, H_a''), 2.16 (dd, *J* = 15.9, 8.4 Hz, 1H, H_a*), 2.13 (dd, *J* = 15.5, 8.4 Hz, 1H, H_a'*), 2.10 (dd *J* = 15.2, 8.4 Hz, 1H, H_a''*), 1.95 (ddddd, *J* = 8.4, 8.4, 4.2, 4.2, 4.2 Hz, 1H, H_b), 1.80-1.69 (m, 5H, H_b'/H_b''/H_g'/H_g''), 1.49-1.22 (m, 12H, H_c/H_c*/H_d/H_d*/H_c''/H_d''/H_d''*/H_d''+(H_d''+H_d''+H_d'/H_d''+H_b''), 1.182 (d, *J* = 6.2 Hz, 6H, two of H_f/H_f'/H_f''), 1.176 (d, *J* = 6.2 Hz, 3H, one of H_f/H_f'/H_f''), 0.92 (d, *J* = 6.8 Hz, 3H, H_b) 0.885 (d, *J* = 6.7 Hz, 3H, H_b'), 0.881 (d, *J* = 6.8 Hz, 3H, H_b''), 0.85 (d, *J* = 6.2 Hz, 3H, H_i, H_i', or H_i''), 0.84 (d, *J* = 6.5 Hz, 3H, H_i, H_i', or H_i''), and 0.82 (d, *J* = 6.2 Hz, 3H, H_i, H_i', or H_i'').

¹³C NMR (125 MHz, CDCl₃) δ the spectral data for this mixture of two (inequivalently populated) rotamers is sufficiently complex that it is difficult to determine with confidence the appropriate set of resonances; a PDF copy of this spectrum is provided below.

IR (neat): 3600-3300, 2960, 1735, 1631, 1461, 1370, 1275, 1159, 1113, and 1070 cm⁻¹.

Exact mass calc. $[C_{34}H_{65}NO_8Na]^+$ 638.4602, found 638.4648.

Acetate derivatives S2a-c of model amide esters S1a-c from *cis*-carvomenthide.

These tris-acetate derivatives were synthesized in analogous manner to the acetates **11a-c**, as described directly above.

Spectral data for S2a (acetylated S1a)

¹H NMR (500 MHz, CDCl₃) δ 4.84 (sextet, J = 6.3 Hz, 1H, H_e), 4.22 (t, J = 5.6 Hz, 2H, H1/H1*), 4.20 (t, J = 5.9 Hz, 2H, H1'/H1'*), 3.65-3.55 (4 overlapping dts, 4H, H2/H2*/H2'/H2'*), 2.32 (dd, J = 15.6, 5.5 Hz, 1H, H_a), 2.15 (dd, J = 15.6, 7.7 Hz, 1H, H_a*), 2.08 (s, 3H, -O₂CCH₃), 2.06 (s, 3H, -O₂CCH₃), 2.02 (s, 3H, -O₂CCH₃), 1.91 (ddddd, J = 6.8, 6.8, 6.8, 5.5, 3.8 Hz, 1H, H_b), 1.76 (dqq, J = 4.0, 6.8, 6.8 Hz, 1H, H_g), 1.60 (dddd, J = 13.5, 11.8, 7.3, 4.8, 1H, H_d), 1.48 (dddd, J = 13.7, 11.0, 5.3, 5.3 Hz, 1H, H_d*), 1.34 (dddd, J = 13.4, 11.1, 6.4, 4.7 Hz 1H, H_c), 1.20 (dddd, J = 13.4, 11.7, 6.5, 5.1 Hz, 1H, H_c*), 1.20 (d, J = 6.3 Hz, 3H, H_f), 0.88 (d, J = 6.9 Hz, 3H, H_h), and 0.85 (d, J = 6.8 Hz, 3H, H_i).

¹³C NMR (125 MHz, CDCl₃) δ 173.4, 170.99, 170.98, 170.8, 71.5, 62.5, 62.1, 47.5, 45.1, 40.3, 34.3, 34.0, 29.6, 27.2, 21.6, 21.1, 21.0, 20.2, 19.6, and 18.7.

IR (neat): 2957, 1738, 1648, 1371, 1236, and 1047 cm⁻¹.

Exact mass calc. for $[C_{20}H_{35}NO_7Na]^+$ 424.2306, found 424.2308.

Spectral data for S2b (acetylated S1b)

¹H NMR (500 MHz, CDCl₃) δ 4.85 (sextet, J = 6.1 Hz, 1H, H_e), 4.84 (sextet, J = 6.2 Hz, 1H, H_e·), 4.14-4.21 (m, 4H, H1/H1*/H1'/H1'*), 3.68-3.53 (m, 4H, H2/H2*/H2'/H2'*), 2.31 (dd, J = 15.2, 5.8 Hz, 1H, H_a), 2.29 (dd, J = 15.6, 6.2 Hz, 1H, H_a·), 2.16 (dd, J = 15.0, 7.7 Hz, 1H, H_a*), 2.15 (dd, J = 15.3, 7.8 Hz, 1H, H_a·*), 2.09 (s, 3H, -O₂CCH₃), 2.03 (s, 3H, -O₂CCH₃), 2.02 (s, 3H, -O₂CCH₃), 1.95-1.87 (m, 1H, H_b), 1.65-1.53 (m, 2H, H_d/H_d·), 1.52-1.43 (m, 2H, H_d*/H_d·*), 1.40-1.31 (m, 2H, H_c/H_c·), 1.25-1.15 (m, 2H, H_c*/H_c·*), 1.204 (d, J = 6.2 Hz, 3H, H_f), 1.20 (d, J = 6.2 Hz, 3H, H_f), 0.87 (d, J = 6.8 Hz, 3H, H_h), 0.86 (d, J = 6.6 Hz, 3H, H_h·), 0.85 (d, J = 6.8 Hz, 3H, H_j), and 0.83 (d, J = 6.7 Hz, 3H, H_i·).

¹³C NMR (125 MHz, CDCl₃) δ 173.74, 173.65, 173.5, 173.4, 171.0, 170.98, 170.96, 170.8, 71.48, 71.46, 71.3, 71.2, 62.4, 62.3, 62.1, 62.0, 47.51, 47.50, 45.9, 45.8, 40.72, 40.70, 40.4, 40.3, 35.9, 35.8, 34.33, 34.27, 34.0, 33.8, 33.7, 29.7, 29.63, 29.60, 27.13, 27.08, 26.98, 26.97, 26.90, 21.58, 21.57, 21.1, 21.0, 20.8, 20.1, 19.73, 19.70, 19.64, 19.60, 19.58, 18.7, 18.6, and 18.5.

IR (neat): 2958, 1734, 1649, 1371, 1243, 1050, and 753 cm⁻¹.

Exact mass calc. for $[C_{30}H_{53}NO_9Na]^+$ 594.3613, found 594.3626.

Spectral data for S2c (acetylated S1c)

¹H NMR (500 MHz, CDCl₃) δ 4.85 [sextets, J = 6.0 Hz, 3H, H_e/H_e^{-/}/H_e^{-,-}], 4.23-4.15 (m, 4H, H1/H1*/H1'/H1'*), 3.68-3.57 (m, 4H, H2/H2*H2'/H2'*), 2.36-2.26 (3H, H_a/H_a^{-/}/H_a^{-,-}), 2.17-2.1 (3H, H_a*/H_a^{-,+}/H_a^{-,+}), 2.03 (s, 6H, -COCH₃), 2.02 (s, 3H, -COCH₃), 1.93-1.87 (m, 1H, H_b), 1.78-1.68 (m, 5H, H_b^{-/}/H_b^{-,-}/H_g^{-/}/H_g^{-,-}), 1.63-1.54 (m, 3H, H_d/H_d^{-/}/H_d^{-,-}), 1.51-1.43 (m, 3H, H_d*/H_d^{-,+}/H_d^{-,*}), 1.41-1.31 (m, 3H, H_c/H_c^{-/}/H_c^{-,-}), 1.29-1.14 (m, 3H, H_c*/H_c^{-,*}/H_c^{-,*}), 1.204 (d, J = 6.3 Hz, 6H, H_f⁻/H_f^{-,*}), 1.20 (d, J = 6.3 Hz, 3H, H_f), 0.88 (d, J = 6.8 Hz, 3H, H_h), 0.86 (d, J = 6.6 Hz, 6H, H_h^{-/}/H_h^{-,*}), 0.85 (d, J = 6.7 Hz, 3H, H_i). 0.833 (d, J = 6.7 Hz, 3H, H_i⁻), and 0.831 (d, J = 6.7 Hz, 3H, H_i^{-,*}).

IR (neat): 2958, 1734, 1651, 1461, 1371, 1244, 1164, and 1022 cm⁻¹.

Exact mass calc. for $[C_{40}H_{71}NO_{11}Na]^+$ 764.4919, found 764.4951.

Synthesis of model amide esters S3a-c derived from diethanolamine (3) *trans*-carvomenthide (trans-7).

Spectral data for S3a (monoamide derived from *trans*-carvomenthide)

¹H NMR (500 MHz, CDCl₃) δ 3.91 (ddd, J = 11.3, 7.3, 3.3 Hz, 1H, H1), 3.82 (ddd, J = 11.3, 6.1, 3.4 Hz, 1H, H1*), 3.80 (app t, J = 5.1 Hz, 2H, H1'/H1'*), 3.77-3.70 (m, 1H, H_e), 3.67 (ddd, J = 14.2, 5.9, 3.2 Hz, 1H, H2), 3.61 (ddd, J = 15.1, 5.0, 5.0 Hz, 1H, H2'), 3.48 (ddd, J = 14.2, 7.2, 3.4 Hz, 1H, H2*), 3.45 (ddd, J = 15.0, 5.1, 5.1 Hz, 1H, H2'*), 2.34 (dd, J = 15.1, 4.4 Hz, 1H, H_a), 2.25 (dd, J = 15.1, 9.3 Hz, 1H, H_a*), 1.94 (nfom, 1H, H_b), 1.74 (dsextet, J = 4.2, 6.8 Hz, 1H, H_g), 1.51-1.44 (m, 1H, H_d), 1.43-1.29 (m, 3H, H_c/H_{c*}/H_{d*}), 1.17 (d, J = 6.2 Hz, 3H, H_f), 0.90 (d, J = 6.8 Hz, 3H, H_h), and 0.85 (d, J = 6.8 Hz, 3H, H_i). Proton assignments were based upon and/or are consistent with the COSY spectral data (copy provided below).

¹³C NMR (125 MHz, CDCl₃) δ 175.7, 68.7, 60.9, 60.8, 52.5, 50.7, 41.0, 37.4, 34.9, 30.2, 27.9, 23.7, 20.0, and 18.5.

IR (neat): 3550-3200, 2959, 2873, 1617, 1464, 1420, and 1054 cm⁻¹.

Exact mass calc. for $[C_{14}H_{29}NO_4Na]^+$, 298.1989, found 298.1988.

Spectral data for S3b (monoamide monoester derived from trans carvomenthide)

¹H NMR (500 MHz, CDCl₃) δ 4.33-4.2 (m, 1H, H1), 4.2-4.10 (m, 1H, H1*), 3.89-3.39 (m, 8H, H1'/H1'*/H2/H2*/H2'/H2'*/He/He'), 2.36 (dd, *J* = 15.3, 4.8 Hz, 1H, Ha), 2.34 (dd, *J* = 15.4, 5.1 Hz, 1H, Ha') 2.24 (dd, *J* = 15.2, 8.9 Hz, 1H, Ha*), 2.12 (dd, *J* = 15.3, 8.4 Hz, 1H, Ha*), 1.95-1.88 (m, 1H, Hb), 1.80-1.69 (m, 3H, Hb'/Hg/Hg'), 1.51-1.3 (m, 4H, Hc/Hd/Hc'/Hd'), 1.19 (d, *J* = 6.0 Hz, 3H, Hf or f'/minor), 1.182 (d, *J* = 6.2 Hz, 3H, Hf or f'/major), 1.176 (d, *J* = 6.2 Hz, Hf or f'/major), 1.17 (d, *J* = 6.1 Hz, Hf or f'/minor), 0.92-0.82 (overlapping ds, 12H, Hb'/Hb/Hi'/Hb).

¹³C NMR (125 MHz, CDCl₃) δ the spectral data for this mixture of two (inequivalently populated) rotamers is sufficiently complex that it is difficult to determine with confidence the appropriate set of resonances; a PDF copy of this spectrum is provided below. ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 174.4, 174.2, 174.0, 68.74, 68.67, 68.4, 68.3, 62.6, 61.7, 61.5, 60.5, 51.2, 49.9, 48.2, 46.2, 41.10, 41.08, 40.6, 37.5, 37.2, 36.1, 36.0, 34.64, 34.57, 30.1, 30.0, 29.9, 29.8, 27.84, 27.75, 23.74, 23.71, 20.0, 19.9, 19.8, 18.7, 18.5, 18.3, and 18.2.

IR (neat): 3500-3300, 2960, 2874, 1734, 1623, 1462, 1370, 1275, 1162, 1113, and 1066 cm⁻¹.

Exact mass calc. for $[C_{14}H_{47}NO_6Na]^+$, 468.3296, found 468.3315.

Spectral data for S3c (monoamide bisester derived from trans carvomenthide)

¹H NMR (500 MHz, CDCl₃) δ 4.29 (ddd, J = 11.6, 6.8, 5.5 Hz, 1H, H1), 4.22 (t, J = 5.6 Hz, 2H, H1'/H1'*), 4.13 (ddd, J = 11.6, 5.7, 5.7 Hz, 1H, H1*), 3.8-3.7 (m, 3H, He/He'/He''), 3.66-3.58 (m, 4H, H2/H2*/H2'/H2'), 2.35 (dd, J = 15.7, 5.0 Hz, 1H, Ha), 2.33 (dd, J = 15.4, 5.1 Hz, 1H, Ha'), 2.31 (dd, J = 15.4, 5.4 Hz, 1H, Ha''), 2.18 (dd, J = 15.7, 8.3 Hz, 1H, Ha*), 2.133 (dd, J = 15.4, 7.8 Hz, 1H, Ha'*), 2.129 (dd, J = 15.4, 8.3 Hz, 1H, Ha''*), 1.93-1.88 (m, 1H, Hb), 1.80-1.69 (m, 5H, Hb'/Hb''/Hg'/Hg''), 1.49-1.29 (m, 12H, Hc/He'/Hd'/Hc'/Hc'*/Hd''/Hd''/Hc''/Hc''*/Hd''/Hd''*/Hc''/Hd''*/Hd''*/Hc''/Hd''*/Hd'''*/Hd''*/Hd''*/Hd''*/Hd''*/Hd''*/Hd'''*/Hd'''*/H

¹³C NMR (125 MHz, CDCl₃) δ 174.1, 173.99, 173.97, 68.7, 68.4, 68.3, 62.2, 61.6, 47.3, 45.6, 41.0, 40.5, 37.3, 36.1, 35.9, 34.5, 30.0, 29.9, 29.8, 27.81, 27.76, 27.6, 23.79, 23.77, 23.75, 23.7, 19.92, 19.86, 19.8, 18.7, 18.6, and 18.3.

IR (neat): 3550-3250, 2960, 2874, 1734, 1630, 1461, 1370, 1274, 1160, and 1115 cm⁻¹.

Exact mass calc. for $[C_{34}H_{65}NO_8Na]^+$, 638.4602, found 638.4649.

Synthesis of acetate derivatives S4a-c of model amide/esters S3a-c from *trans*-carvomenthide.

Spectral data for S4a (acetylated S3a)

¹H NMR (500 MHz, CDCl₃) δ 4.85 (sextet, J = 6.3 Hz, 1H, H_e), 4.21 (t, J = 5.6 Hz, 2H, H1/H1*), 4.20 (t, J = 5.9 Hz, 2H, H1'/H1'*), 3.63 (t, J = 6.6 Hz, 2H, H2'/H2'*), 3.61, (t, J = 5.9 Hz, 2H, H2/H2*), 2.33 (dd, J = 15.6, 5.6 Hz, 1H, H_a), 2.14 (dd, J = 15.6, 7.5 Hz, 1H, H_a*), 2.08 (s, 3H, -C1O₂CCH₃), 2.06 (s, 3H, -C1'O₂CCH₃), 2.02 [s, 3H, -R₂C(H)O₂CCH₃], 1.95-1.88 (m, 1H, H_b), 1.75 (dsept, J = 6.9, 4 Hz, 1H, H_g), 1.57 (dddd, J = 13.4, 11.0, 7.2, 5.3 Hz, 1H, H_d), 1.49 (dddd, J = 13.4, 10.9, 5.4, 5.4 Hz, 1H, H_d*), 1.34-1.2 (m, 2H, H_c/H_c*), 1.20 (d, J = 6.2 Hz, 3H, H_f), 0.87 (d, J = 6.9 Hz, 3H, H_h), and 0.85 (d, J = 6.9 Hz, 3H, H_i). Proton assignments were based upon and/or are consistent with the COSY spectral data (copy provided below).

¹³C NMR (125 MHz, CDCl₃) δ 173.5, 170.99, 170.98, 170.9, 71.4, 62.4, 62.1, 47.5, 45.9, 40.2, 34.3, 33.9, 29.8, 27.0, 21.6, 21.1, 21.0, 20.1, 19.6, and 18.8.

IR (neat): 2958, 2873, 1734, 1622, 1461, 1419, 1251, 1163, 1058, and 1029 cm⁻¹.

Exact mass calc. for $[C_{20}H_{35}NO_7Na]^+$, 424.2306, found 424.2260.

Spectral data for S4b (acetylated S3b)

¹H NMR (500 MHz, CDCl₃) δ 4.858 (app sextet, J = 6.2 Hz, 1H, H_e or H_e[']), 4.856 (app sextet, J = 6.2 Hz, 1H, H_e or H_e[']), 4.22-4.17 (m, 4H, H1/H1*/H1'/H1'*), 3.66-3.56 (m, 4H, H2/H2*/H2'/H2'*), 2.33 (dd, J = 15.4, 5.5 Hz, 0.5H, H_a), 2.32 (dd, J = 15.4, 5 Hz, 0.5H, H_a), 2.31 (dd, J = 15.6, 6.1 Hz, 0.5H, H_a[']), 2.29 (dd, J = 15.4, 6.1 Hz, 0.5H, H_a[']), 2.15 (two dds, J = 15.7, 7.1 Hz, 1H, H_a*), 2.14 (dd, J = 15.4, 7.3 Hz, 0.5H, H_a^{'*}), 2.13 (dd, J = 15.5, 7.0 Hz, 0.5H, H_a^{'*}), 2.08 (s, 1.5H, -C1'O₂CCH₃), 2.06 (s, 1.5H, -C1'O₂CCH₃), 2.025 (s, 3H, -Ce or e'O₂CCH₃), 2.019 (s, 3H, -Ce or e'O₂CCH₃), 1.94-1.87 (m, 1H, H_b), 1.79-1.67 (m, 3H, H_b[']/H_g/H_g[']), 1.62-1.53 (m, 2H, H_d/H_d[']), 1.53-1.43 (m, 2H, H_d*/H_d^{'*}), 1.37-1.2 (m, 4H, H_c/ H_c*/H_c*/H_c**), 1.20 (br d, J = 6.3 Hz, 6H, H_f/H_f[']), 0.876 (d, J = 6.6 Hz, 1.5H, H_{i or i}' of h or h'), 0.863 (d, J = 6.6 Hz, 1.5H, H_{i or i}' of h or h'), 0.850 (d, J = 6.6 Hz, 3H, H_{i or i}' of h or h'), and 0.833 (d, J = 7.0 Hz, 3H, H_{i or i}' of h or h').

¹³C NMR (125 MHz, CDCl₃) δ 173.53, 173.46, 173.2, 170.7, 71.18, 71.16, 71.0, 70.9, 62.2, 62.1, 61.9 61.8, 47.34, 47.31, 47.28, 47.26, 45.7, 45.6, 40.5, 40.4, 40.1, 39.9, 35.84, 35.84, 35.76, 34.24, 34.19, 33.8, 33.7, 33.48, 33.46, 29.7, 29.61, 29.58, 26.80, 26.76, 26.7, 26.6, 21.8, 21.39, 21.38, 20.9, 20.81, 20.78, 20.75, 20.3, 20.25, 19.99, 19.96, 19.94, 19.92, 19.43, 19.37, 19.32, 19.27, 19.25, 18.81, 18.78, 18.64, 18.6, 18.5, 18.44, and 18.43. IR (neat): 2957, 2873, 1734, 1649, 1460, 1371, 1242, 1164, 1131, and 1050 cm⁻¹.

Exact mass calc. for [C₃₀H₅₃NO₉Na]⁺, 594.3613, found 594.3639.

Spectral data for S4c (acetylated S3c)

¹H NMR (500 MHz, CDCl₃) δ 4.86 (sextet, J = 6.2 Hz, 3H, H_e/H_e·/H_e··), 4.24-4.15 (m, 4H, H1/H1*/H1'/H1'*), 3.67-3.57 (m, 4H, H2/H2*/H2'/H2'*), 2.34 (dd, J = 15.5, 5.7 Hz, 1H, H_a), 2.31 (dd, J = 15.3, 5.9 Hz, 1H, H_a'), 2.28 (dd, J = 15.4, 6.1 Hz 1H, H_a''), 2.15 (dd, J = 15.4, 6.9 Hz, 1H, H_a*), 2.14 (dd, J = 15.5, 7.4 Hz, 1H, H_a'*), 2.13 (dd, J = 15.5, 7.2 Hz, 1H, H_a''*), 2.025 (s, 3H, -O₂CCH₃), 2.024 (s, 3H, -O₂CCH₃), 2.02 (s, 3H, -O₂CCH₃), 1.94-1.87 (nfom, 1H, H_b), 1.80-1.66 (m, 5H, H_g/H_{b'}/H_{b''}/H_g''), 1.62-1.53 (m, 3H, H_d/H_{d'}'/H_d''), 1.52-1.43 (m, 3H, H_d*/H_d'*/H_d'**), 1.37-1.20 (m, 6H, H_c/H_c'/H_c'*/H_c'*/H_c'**), 1.206 (d, J = 6.3 Hz, 6H, H_f'H_f''), 1.204 (d, J = 6.3 Hz, 3H, H_f), 0.874 (d, J = 6.7 Hz, 3H, H_g), 0.863 (d, J = 6.4 Hz, 3H, H_g'), 0.862 (d, J = 6.3 Hz, 3H, H_g''), 0.850 (d, J = 6.7 Hz, 3H, H_b), 0.833 (d, J = 6.7 Hz, 3H, H_h'), and 0.832 (d, J = 6.7 Hz, 3H, H_h'').

¹³C NMR (125 MHz, CDCl₃) δ 173.7, 173.6, 173.4, 170.94, 170.91, 71.4, 71.2, 71.1, 62.3, 62.0, 47.5, 45.8, 40.7, 40.6, 40.2, 36.0, 35.9, 34.4, 33.9, 33.7, 33.6, 30.0, 29.9 29.8, 26.94, 26.87, 26.83, 21.60, 21.58, 20.2, 20.1, 19.7, 19.6, 19.5, 18.8, 18.7, and 18.66.

IR (neat): 2958, 2874, 1734, 1650, 1461, 1371, 1244, 1163, 1132, and 1021 cm⁻¹.

Exact mass calc. for $[C_{40}H_{71}NO_{11}Na]^+$, 764.4919, found 764.4958.

Preparation procedures for PU films (entries 2-8, Table 3 in manuscript)

PU[8_{PCM-9}/MDI] (entry 3)

This carvomenthide-based PU film was prepared by a procedure entirely analogous to that described in the manuscript [Experimental: $PU[4_{PM-9}/MDI]$ (entry 1, Table 3)]. The differences were that polyol 8_{PCM-9} was used instead of 4_{PM-9} and that the resulting film was amber-colored instead of clear.

PU[4_{PM-9}/PMDI] (entry 2) and PU[8_{PCM-9}/PMDI] (entry 4)

A similar procedure was employed for the fabrication of the PU films derived from either the (–)-menthide-based or carvomenthide-based polyols 4_{PM-9} or 8_{PCM-9} , respectively. The only difference in this compositon is that PMDI (0.190 g, 1.4 mmol) was used instead of MDI.

PU[4_{PM-18}/MDI] (entry 5)

Anhydrous acetone (2 mL) was added to a mixture of (–)-menthide-based polyol (**8**, 600 mg, 0.19 mmol, assuming a theoretical MW of 3165 amu for an 18:1 oligomer) and diethylene glycol (8 μ L, 9 mg, 0.1 mmol) to form a homogenous solution. Diphenylmethane diisocyanate (MDI, a mixture of positional isomers, 90 μ L, 110 mg, 0.42 mmol) was quickly added (\leq 1 min) and the resulting solution quickly mixed to homogeneity using a glass pipette. The resulting viscous mixture was immediately layered into a polyethylene cap (5 cm diameter, ca. 4 mm height), which was placed in a desiccator (ca. 250 cm d) connected to a vacuum source. A mild vacuum (ca. 200 torr) was applied periodically every few hours to remove the headspace solvent, thereby facilitating the formation of a bubble-free film. After one week at ambient temperature the film was subjected to an annealing process at 80 °C in a vacuum oven (ca. 1 torr) for 3 days. The resulting essentially colorless film (ca. 4 mm final thickness) was removed from the cap and was characterized by ATR-IR spectroscopy, DSC, and dynamic mechanical and tensile strength measurements.

PU[8_{PCM-18}/MDI] (entry 7)

This carvomenthide-based PU film was prepared by a procedure entirely analogous to that detailed in the paragraph immediately above [for $PU[4_{PM-18}/MDI]$ (entry 5)]. The differences were that polyol 8_{PCM-18} was used instead of 4_{PM-18} and that the resulting film was amber-colored instead of clear.

PU[4_{PM-18}/PMDI] (entry 6) and PU[8_{PCM-18}/PMDI] (entry 8)

A similar procedure was employed for the fabrication of the PU films derived from either the (–)-menthide-based or carvomenthide-based polyols 4_{PM-18} or 8_{PCM-18} , respectively. The only difference was that PMDI (0.100 g, 0.75 mmol) was used in both of these preparations.

Representative ATR-IR spectrum of a film ($PU[4_{PM-9}/MDI]$, entry 1, Table 3 in manuscript). No residual isocyanate functionality is observable.

Dynamic Mechanical Analysis (DMA; T *vs.* **E'').** Glass transition temperature (T_g) [peak maximum for loss modulus (E'')] measured from DMA data for each PU film.

PU[4_{PM-9}/MDI]_Film1

PU[4_{PM-9}/MDI]_Film3

PU[4_{PM-9}/PMDI]

PU[8_{PCM-9}/MDI]_Film1

PU[8_{PCM-9}/PMDI]

PU[4_{PM-18}/MDI]

PU[4_{PM-18}/PMDI]

PU[8_{PCM-18}/MDI]_Film1

PU[8_{PCM-18}/PMDI]

Tensile Strength. Stress vs. strain data for each PU film.

PU[4_{PM-9}/MDI]

Supplementary Information

page S44 of S100

Supplementary Information

page S45 of S100

Supplementary Information

page S46 of S100

∩ Me <mark>p</mark> Me

H_{i*}

Hi

2

R²O

R¹O

= carvomenthoyl

m

n _O.

ξ

8_{РМ-9} (9:1 ratio of **7** to **3**)

Мe

а

b

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal second the second se

Electronic Supplementary Material (ESI) for Polymer Chemistry This journee Strenge Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Polymer Chemistry This journee Strenge Society of Chemistry 2012

3

2

1

4

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal set of Chemistry 2012

0.5

1.0

Supplementary Information

Electronic Supplementary Material (ESI) for Polymer Chemistry This jour server the manual Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal service of Chemistry 2012

Supplementary Information

Supplementary Information

Supplementary Information

1.0

3.0

2.5

2.0

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal second the measure of Chemistry 2012

Supplementary Information

Electronic Supplementary Material (ESI) for Polymer Chemistry This journee Strate The The The The The Strate Society of Chemistry 2012

Supplementary Information

Electronic Supplementary Material (ESI) for Polymer Chemistry This journee and the managed Society of Chemistry 2012

Supplementary Information

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal second the second se

Supplementary Information

20

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal second the management of the second second second second second second second second second second

Supplementary Information

				1	1
4.5	4.0	3.5	3.0	2.5	2.0

1.0

Supplementary Information

'	
ppm 4.0	3.5

3.0

2.5

2.0

1.5

1.0

M

Electronic Supplementary Material (ESI) for Polymer Chemistry This journee and the meyele Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal server and the server se

4

5

1

3

4

Supplementary Information

1

ppm 4.0

Electronic Supplementary Material (ESI) for Polymer Chemistry This journeet and the management of Chemistry 2012

1 1	
.5 4.0	

15 40 35 30 25 20 15 10	1
00 0.0 0.0 2.0 1.0 1.0	ć

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal service and the service of Chemistry 2012

3

M. . .

1

2

4

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal service and the service of Chemistry 2012

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal server and the server

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal server and the server se

Supplementary Information

3

2

1

4

