## Unexpected radical polymerization behavior of oligo(2-ethyl-2-

## oxazoline) macromonomers

Christine Weber, Krzysztof Babiuch, Sarah Rogers, Igor Y. Perevyazko, Richard Hoogenboom*,

Ulrich S. Schubert*

## Supporting information



Figure SI-1: SEC trace $\left(\mathrm{CHCl}_{3}\right.$, RI detection) from the reaction solution of the FRP of OEtOxA. $\mathrm{M}_{\mathrm{n}}=$ $6,080 \mathrm{~g} \mathrm{~mol}^{-1} ;$ PDI $=1.18$, conv. $=81 \%, \mathrm{M} /$ AIBN $=240($ similar to $\mathrm{M} / \mathrm{CTA}=60$ from RAFT $),[\mathrm{M}]=$ 0.5 M in EtOH, $\mathrm{T}=70^{\circ} \mathrm{C}, \mathrm{t}=17.5 \mathrm{~h}$.

backbone end groups

acrylate
backbone
$\delta$ [ppm]
Figure SI-2: zoom into the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of $\mathbf{P 3}$ indicating the presence of vinylic backbone end-groups.


Figure SI-3. Dependence of $\eta_{\text {sp }} / \mathrm{c}$ on the solute concentration for the determination of the intrinsic viscosity.


Figure SI-4. Dependence of $\Delta \rho=\left(\rho-\rho_{0}\right)$ on the solute concentration, where $\rho$ and $\rho_{0}$ are the density of the solution and solvent respectively. The slope $\Delta \rho / \Delta c$ corresponds to the buoyancy factor $\left(1-v \rho_{0}\right)=0.166 \pm 0.01$, which yields $v=0.835 \pm 0.004 \mathrm{~cm}^{3} \cdot \mathrm{~g}^{-1}$ for the partial specific volume.


Figure SI-5: DSC thermograms of P1-P4 (second heating run, heating rate $20 \mathrm{~K} \mathrm{~min}^{-1}$ ).


Figure SI-6: Turbidity curves of aqueous solutions of POEtOxA P1-P4 ( $\mathrm{c}=5 \mathrm{mg} \mathrm{mL}^{-1}$, heating rate $1 \mathrm{~K} \mathrm{~min}^{-1}$ ).

Table SI-1: Parameters obtained by FISH model fitting of the SANS data for P1-P4 in $\mathrm{D}_{2} \mathrm{O}$.

|  | Ellipsoid $^{\mathrm{a}}$ |  |  | Rod $^{\mathrm{b}}$ |  | Rod Theo. |  | Ellipse or Rod? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R}_{1} / \AA$ | X | $\mathrm{R}_{2} / \AA$ | $\mathrm{R} / \AA$ | $\mathrm{L} / \AA$ | $\mathrm{R} / \AA$ | $\mathrm{L} / \AA$ |  |
| $\mathbf{P 1}$ | 7.9 | 3.9 | 30.8 | 10.2 | 44.5 | 22 | 20 | Rod |
| $\mathbf{P 2}$ | 8.6 | 4.0 | 34.4 | 13.0 | 47.6 | 22 | 37 | Rod |
| $\mathbf{P 3}$ | 12.8 | 3.2 | 41.0 | 12.2 | 60.8 | 22 | 110 | Rod |
| $\mathbf{P 4}$ | 15.7 | 2.6 | 40.8 | 14.2 | 62.1 | 22 | 276 | Rod |

[^0]

Figure SI-7: Kratky plots for SANS data of solutions of P1-P4 in $\mathrm{D}_{2} \mathrm{O}\left(\mathrm{c}=5 \mathrm{mg} \mathrm{mL}^{-1}\right)$.


Figure SI-8: Guinier plot for SANS data of $\mathbf{P 6}$ in $\mathrm{D}_{2} \mathrm{O}\left(\mathrm{c}=5 \mathrm{mg} \mathrm{mL}^{-1}\right)$. The radius of gyration $R_{g}$ is calculated from the slope of the linear fit according to $R_{g}=\sqrt{-3 \cdot \text { slope }}$ in the low Q range.


Figure SI-9: Zimm plots for SANS data of P1-P4 in $\mathrm{D}_{2} \mathrm{O}\left(\mathrm{c}=5 \mathrm{mg} \mathrm{mL}^{-1}\right)$. The correlation length $\xi$ is obtained from linear fitting according to $\xi=\sqrt{\text { slope/intercept }}$ and was used to calculate $R_{g}$.

Table SI-2. Radii of gyration $\left(R_{g}\right)$ calculated from linear fitting of the Zimm and Guinier plots of the SANS data of P1-4 in $\mathrm{D}_{2} \mathrm{O}$.

|  | $\mathrm{I}_{0}\left[\mathrm{~cm}^{-1}\right]$ | $\boldsymbol{\xi}\left[\begin{array}{l}\text { ¢ }\end{array}{ }^{\text {a }}\right.$ | $\begin{gathered} \mathbf{R g}_{\mathrm{g}}[\AA \mathbf{\AA}] \\ \mathbf{Z i m m} \\ (\operatorname{low} \mathbf{Q})^{\text {b }} \end{gathered}$ | $\begin{gathered} \mathbf{R g}_{\mathrm{g}}[\AA \mathrm{~A}] \\ \mathbf{Z i m m} \\ (\mathrm{high} \mathbf{Q}) \end{gathered}$ | $\mathbf{R}_{\mathrm{g}}[\AA]$ <br> Guinier | $\begin{gathered} \mathbf{R}_{\mathbf{g}}[\AA \AA] \\ \text { cyl. fit }{ }^{\text {d }} \end{gathered}$ | $\begin{aligned} & \mathbf{R}_{\mathbf{g}}[\AA \mathbf{A}] \\ & \text { ell. fit }{ }^{\text {en }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P1 | 0.085 | 9.5 | 16 | 13 | 13 | 14 | 15 |
| P2 | 0.15 | 13 | 22 | 18 | 15 | 15 | 17 |
| P3 | 0.29 | 19 | 33 | 27 | 17 | 18 | 20 |
| P4 | 0.28 | 21 | 37 | 30 | 19 | 18 | 21 |

${ }^{\text {a }}$ correlation length obtained from Zimm analysis.
${ }^{\mathrm{b}}$ calculated according to $R_{g}=\xi \sqrt{3}$.
${ }^{c}$ calculated according to $R_{g}=\xi \sqrt{2}$.
${ }^{\text {d }}$ calculated according to $R_{g}=\sqrt{\frac{L^{2}}{12}+\frac{R^{2}}{2}}$ from the cylindrical fit.
${ }^{\mathrm{e}}$ calculated according to $R_{g}=\sqrt{\frac{2 R_{1}^{2}+2 R_{2}^{2}}{5}}$ from the ellipsoid fit.


[^0]:    ${ }^{\mathrm{a}} \mathrm{R}_{1}$ and $\mathrm{R}_{2}$ are the radii of the ellipse, and $\mathrm{X}=\mathrm{R}_{2} / \mathrm{R}_{1}$.
    ${ }^{\mathrm{b}} \mathrm{R}$ corresponds to the radius and L to the length of the rod.

