Supporting Information

S

Through-space Conjugated Polymers Consisting of Planar Chiral Pseudo-*ortho*-linked [2.2]Paracyclophane

Yasuhiro Morisaki,* Ryoyu Hifumi, Lin Lin, Kenichi Inoshita, and Yoshiki Chujo*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: ymo@chujo.synchem.kyoto-u.ac.jp (Y. Morisaki) chujo@chujo.synchem.kyoto-u.ac.jp (Y. Chujo)

Contents:	page
General	S-2
Materials	S-3
Synthetic procedures and characterization	
(R_{p},S) -2 and (S_{p},S) -2	S-4
(R_p) -4 and (S_p) -4	S-10
(R_p) -5 and (S_p) -5	S-15
·Polymerization	S-20
Optical properties of (R_p) -5 and (S_p) -5	S-30
Optical properties of (R_p) -C1 and (S_p) -C1	S-31
References	S-32

General

¹H and ¹³C spectra were recorded on a JEOL EX400 or AL400 instrument at 400 and 100 MHz, respectively. Samples were analyzed in CDCl₃ or CD₂Cl₂, and the chemical shift values were expressed relative to Me₄Si as an internal standard. Analytical thin layer chromatography (TLC) was performed with silica gel 60 Merck F254 plates. Column chromatography was performed with Wakogel C-200 SiO₂. Flash column chromatorgraphy was performed with a Yamazen Science YFLC AI-580 using a Hi-flash column SiO_2 (size 2L, 2.6 cm × 15 cm). High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX102A spectrometer. MALDI experiments were performed on a Thermo Scientific MALDI LTQ Orbitrap XL hybrid mass spectrometer using *trans*-2-[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix. Recyclable preparative high-performance liquid chromatography (HPLC) was carried out on a Japan Analytical Industry Model LC918R (JAIGEL-1H and 2H columns) and LC9204 (JAIGEL-2.5H and 3H columns) using CHCl₃ as an eluent. Gel permeation chromatography (GPC) was carried out on a TOSOH 8020 (TSK gel α -4000, α -3000, and α -2500 columns) instrument using THF as an eluent at 40 °C after calibration with standard polystyrene. UV-vis spectra were recorded on a SHIMADZU UV-3600 spectrophotometer, and samples were analyzed in CHCl₃ at room temperature. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer, and samples were analyzed in CHCl₃ at room temperature. Specific rotations $([\alpha]_{D}^{t})$ were measured with a Rudolph Research Analytical ATUTOPOL IV polarimeter or HORIBA SEPA-500 polarimeter. Enantiomeric purity was confirmed by a HPLC (TOSOH UV-8020) equipped with a Daicel Chiralpak IA column (0.46 cm × 25 cm, flow rate 0.5 mL/min). Circular dichroism (CD) spectra were recorded on a JASCO J-820 spectropolarimeter with CHCl₃ as a solvent at room temperature. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-200S with CHCl₃ as a solvent at room temperature. Elemental analyses were performed at the Microanalytical Center of Kyoto University.

Materials

rac-Pseudo-*ortho*-dibromo[2.2]paracyclophane (*rac*-1) was purchased from Strem Chemicals Inc. and used without further purification. *n*-BuLi (1.59 M in hexane) and *t*-BuLi (1.54 M in pentane) were purchased from Kanto Chemical Co., Inc. and used without further purification. (1R,2S,5R)-(–)-Menthyl (*S*)-*p*-toluenesulfinate, dimethyl-1-diazo-2-oxopropylphosphonate, and Pd₂(dba)₃ were purchased from Tokyo Chemical Industry Co., Ltd. and used without further purification. P(*t*-Bu)₃, CuI, dehydrated *N*,*N*-dimethylformamide (DMF), and dehydrated toluene were purchased from Wako Pure Chemical Industries and used without further purification. THF and Et₃N were purchased from Kanto Chemical Co., Inc. and purified by passage through solvent purification columns under Ar pressure.¹ 2,5-Didodecyloxy-1,4-diiodobenzene was prepared as described in the literature.²

Synthetic Procedures and Characterization

 (R_p,S) -2 and (S_p,S) -2

To a solution of *rac*-pseudo-*ortho*-dibromo[2.2]paracyclophane *rac*-1 (385 mg, 1.05 mmol) in THF (10 mL) at -78 °C was added *n*-BuLi (1.59 M in hexane; 0.8 mL, 1.3 mmol) under Ar atmosphere. The yellow solution was stirred for 1 h at -78 °C. The solution was added to (1R,2S,5R)-(-)-menthyl (*S*)-*p*-toluenesulfinate (465 mg, 1.58 mmol) in THF (5.0 mL) at -78 °C. The yellow solution was warmed to room temperature and stirred for 11 h. To the reaction mixture was added saturated aqueous NH₄Cl solution, and the organic layer was extracted three times with EtOAc. The combined organic layer was removed with brine and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The crude residue was purified by flash column chromatography on SiO₂ (eluent: hexane/EtOAc = 4/1 v/v) to give (R_p ,*S*)-**2** (176 mg, 0.41 mmol, 39%) and (S_p ,*S*)-**2** (172 mg, 0.40 mmol, 39%) as colorless crystals. Recrystallization from toluene and hexane (good and poor solvent, respectively) was carried out to obtain single crystals of (R_p ,*S*)-**2** and (S_p ,*S*)-**2**.

 $(R_{\rm p},S)$ -2. Yield: 39%.

 $R_{\rm f} = 0.31$ (hexane/EtOAc = 4/1 v/v).

¹H NMR (CD₂Cl₂, 400 MHz) δ 2.38 (s, 3H), 2.75 (m, 1H), 2.85 (m, 1H), 3.15 (m, 4H), 3.48 (m, 1H), 3.81 (m, 1H), 6.59 (m, 4H), 6.93 (s, 1H), 7.25 (m, 3H), 7.39 (d, *J* = 8.1 Hz, 2H) ppm. ¹³C NMR (CD₂Cl₂, 100 MHz) δ 21.9, 33.0, 33.7, 35.3, 36.3, 125.7, 127.6, 129.6, 130.2, 132.0, 135.3, 137.5, 137.6, 138.0, 139.5, 141.0, 141.2, 141.6, 142.5, 142.7, 142.9 ppm. HRMS (EI) calcd. for C₂₃H₂₁OBrS [M]⁺: 424.0496, found 424.0493. Elemental analysis calcd. for $C_{23}H_{21}OBrS$: C 64.94; H 4.98; S 7.54; Br 18.78, found: C 65.14; H 4.87; S 7.49; Br 18.49.

 $[\alpha]^{27}_{D} = -136.6 \ (c \ 0.25, \text{CHCl}_3).$

Retention time of HPLC: t = 10.5 min (Chiralpak IA, 0.46 cm × 25 cm, hexane/THF = 6/4 v/v, rate 0.5 mL/min).

(*S*_p,*S*)-**2**. Yield: 39%.

 $R_{\rm f} = 0.28$ (hexane/EtOAc = 4/1 v/v).

¹H NMR (CD₂Cl₂, 400 MHz) δ 2.32 (s, 3H), 2.86 (m, 2H), 3.16 (m, 3H), 3.28 (m, 1H), 3.52 (m, 2H), 6.56 (m, 2H), 6.62 (m, 2H), 6.94 (d, J = 1.7 Hz, 1H), 7.20 (m, 2H), 7.39 (m, 2H), 7.59 (d, J = 1.7 Hz, 1H) ppm.

¹³C NMR (CD₂Cl₂, 100 MHz) δ 21.8, 33.3, 34.0, 34.4, 36.5, 124.7, 126.0, 127.5, 130.6, 132.2, 135.9, 136.3, 136.4, 136.8, 137.3, 139.9, 142.0, 142.3 (overlapping signals), 143.6, 145.2 ppm.

HRMS (EI) calcd. for $C_{23}H_{21}OBrS[M]^+$: 424.0496, found 424.0499.

Elemental analysis calcd. for C₂₃H₂₁OBrS: C 64.94; H 4.98; S 7.54; Br 18.78, found: C 65.22; H 4.97; S 7.55; Br 18.49.

 $[\alpha]^{25}_{D} = +128.5 \ (c \ 0.25, \text{CHCl}_3).$

Retention time of HPLC: t = 13.7 min (Chiralpak IA, 0.46 cm × 25 cm, hexane/THF = 6/4 v/v, rate 0.5 mL/min).

Column: Hi-flash column 2L SiO₂, 2.6×15 cm Eluent: hexane/EtOAc gradient Flow rate: 20 mL/min

Figure S1. HPLC chart of (R_p, S) -2 and (S_p, S) -2.

Column: Chiralpak IA, 0.46 cm \times 25 cm Eluent: hexane/THF = 6/4 v/v Flow rate: 0.5 mL/min

Figure S3. ¹H NMR spectrum of (R_p, S) -**2**, 400 MHz, CD₂Cl₂.

Figure S4. ¹³C NMR spectrum of (R_p,S) -**2**, 100 MHz, CD₂Cl₂.

Figure S5. ¹H NMR spectrum of (S_p, S) -2, 400 MHz, CD₂Cl₂.

Figure S6. ¹³C NMR spectrum of (S_p,S) -2, 100 MHz, CD₂Cl₂.

 $(R_{\rm p})-4$

To a stirred solution of (R_p,S) -2 (156 mg, 0.37 mmol) in THF (10 mL) was added *t*-BuLi (1.54 M in pentane, 1.9 mL, 3.0 mmol) at -78 °C under Ar atmosphere. The solution turned orange immediately and was stirred for 30 min. Dehydrated DMF (1.1 ml, 14.3 mmol) was added to the reaction mixture at -78 °C, and it was allowed to warm to room temperature. The resulting colorless solution was stirred for 9 h. To the reaction mixture was added H₂O to quench the reaction, and the organic layer was extracted three times with EtOAc. The combined organic layer was washed with brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed by a rotary evaporator. The crude residue was purified by column chromatography on SiO₂ (eluent: hexane/EtOAc = 4/1 v/v) to give (R_p)-4 (69.6 mg, 0.26 mmol, 71%) as colorless crystals.

Yield: 71%.

 $R_{\rm f} = 0.30$ (hexane/EtOAc = 4/1 v/v).

¹H and ¹³C NMR spectral data were matched with the reported values of the racemic compound.³ HRMS (EI) calcd. for $C_{18}H_{16}O_2$ [M]⁺: 264.1150, found 264.1154. $[\alpha]^{27}_{D} = -67.4$ (*c* 0.25, CHCl₃).

Retention time of HPLC: t = 25.3 min (Chiralpak IA, hexane/*i*-PrOH = 9/1 v/v).

The synthetic procedure is the same as that of (R_p) -4.

Yield: 87 %.

 $[\alpha]^{27}_{D} = +66.1 \ (c \ 0.25, \text{CHCl}_3).$

Retention time of HPLC: t = 22.3 min (Chiralpak IA, hexane/*i*-PrOH = 9/1 v/v).

Column: Chiralpak IA, 0.46 cm × 25 cm Eluent: hexane/*i*-PrOH = 9/1 v/v Flow rate: 0.5 mL/min

Figure S7. HPLC charts of *rac*-4, (R_p) -4, and (S_p) -4.

Figure S8. ¹H NMR spectrum of (R_p) -4, 400 MHz, CDCl₃.

Figure S9. ¹³C NMR spectrum of (R_p) -4, 100 MHz, CDCl₃.

Figure S10. ¹H NMR spectrum of (S_p) -4, 400 MHz, CDCl₃.

Figure S11. 13 C NMR spectrum of (S_p)-4, 100 MHz, CDCl₃.

 $(R_{\rm p})$ -5

The mixture of (R_p) -4 (70.2 mg, 0.27 mmol), K₂CO₃ (388 mg, 2.8 mmol), and dimethyl-1-diazo-2-oxopropylphosphonate (300 mg, 1.6 mmol) were dissolved in CH₂Cl₂ (5.0 mL). To the solution was added MeOH (10 mL) at room temperature under air. The resulting yellow solution was warmed to 50 °C and stirred for 14 h. The solution color turned pink after stirring, and H₂O was added to the solution. The organic layer was extracted three times with CH₂Cl₂, washed with brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed by a rotary evaporator. The crude residue was purified by column chromatography on SiO₂ (eluent: hexane/EtOAc = 20/1 v/v) to give (R_p)-5 (41.4 mg, 0.16 mmol, 60%) as colorless crystals.

Yield: 60%.

 $R_{\rm f} = 0.35$ (hexane/EtOAc = 20/1 v/v).

¹H and ¹³C NMR spectral data were matched with the reported values of the racemic compound.³ HRMS (EI) calcd. for $C_{20}H_{16}$ [M]⁺: 256.1252, found 256.1254.

 $[\alpha]^{27}_{D} = -45.3 \ (c \ 0.25, \text{CHCl}_3).$

Retention time of HPLC: t = 13.8 min (Chiralpak IA, hexane/THF = 50/1 v/v).

(*S*_p)-5

The synthetic procedure is the same as that of (R_p) -5.

Yield: 57 %.

HRMS (EI) calcd. for $C_{20}H_{16}$ [M]⁺: 256.1252, found 256.1254.

 $[\alpha]^{27}_{D} = +44.5 \ (c \ 0.25, \text{CHCl}_3).$

Retention time of HPLC: t = 14.9 min (Chiralpak IA, hexane/THF = 50/1 v/v).

Column: Chiralpak IA, 0.46 cm × 25 cm Eluent: hexane/THF = 50/1 v/v Flow rate: 0.5 mL/min

Figure S12. HPLC charts of *rac*-5, (R_p) -5, and (S_p) -5.

Figure S13. ¹H NMR spectrum of (R_p) -5, 400 MHz, CD₂Cl₂.

Figure S14. ¹³C NMR spectrum of (R_p) -5, 100 MHz, CD₂Cl₂.

Figure S15. ¹H NMR spectrum of (S_p) -5, 400 MHz, CD₂Cl₂.

Figure S16. ¹³C NMR spectrum of (S_p) -5, 100 MHz, CD₂Cl₂.

Polymerization

All of the solid reagents (R_p)-**5** (25.6 mg, 0.10 mmol), 2,5-didodecyloxy-1,4-diiodobenzene (69.9 mg, 0.10 mmol), Pd₂(dba)₃ (5.5 mg, 0.0060 mmol), P(*t*-Bu)₃ (4.2 mg, 0.021 mmol), and CuI (2.0 mg, 0.011 mmol) were placed in a Schlenk tube equipped with a magnetic stirring bar and a three-way cock. This tube was purged with Ar, followed by introducing toluene (0.50 ml) and Et₃N (0.50 mL). The reaction was carried out at 70 °C for 24 h. After the reaction mixture was cooled to room temperature, 28% aqueous NH₃ solution was added to the reaction mixture. The organic layer was extracted three times with CHCl₃ and washed with brine. The combined organic solution was filtered with Celite and washed with CHCl₃. The solvent was removed by a rotary evaporator. The residue was subjected to column chromatography (HPLC, eluent: CHCl₃) to separate (R_p)-**P1** (52.6 mg, 75%) as an orange solid and (R_p)-**C1** (9.8 mg, 14%) as a yellow solid.

 (R_p) -**P1**. Yield: 75%. $M_n = 7800 \text{ (PDI} = 1.8).$

¹H NMR (CD₂Cl₂, 400 MHz) δ 0.87 (m, 6H), 1.21 (m, 32H), 1.46 (m, 4H), 1.80 (m, 4H), 2.88 (m, 2H), 3.07 (m, 2H), 3.30 (m, 2H), 3.78 (m, 2H), 3.94 (m, 4H), 6.57 (m, 4H), 7.05 (m, 2H), 7.16 (m, 2H) ppm.

¹³C NMR (CD₂Cl₂, 100 MHz) δ 14.8, 23.6, 27.3, 30.3, 30.6 (overlapping signals), 32.9, 34.5, 35.3, 70.4, 90.7, 95.7, 115.0, 117.2, 125.9, 133.8, 134.2, 134.7, 140.6, 143.1, 154.4 ppm.

(*R*_p)-C1. Yield: 14%.

¹H NMR (CD₂Cl₂, 400 MHz) δ 0.86 (m, 18H), 1.23 (m, 64H), 1.28 (m, 32H), 1.46 (m, 12H), 1.87 (m, 12H), 2.89 (m, 6H), 3.11 (m, 6H), 3.30 (m, 6H), 3.74 (m, 6H) 4.07 (t, *J* = 6.8 Hz, 12H), 6.60 (m, 12H), 7.09 (m, 6H), 7.24 (m, 6H) ppm.

¹³C NMR (CD₂Cl₂, 100 MHz) δ 14.7, 23.5, 27.1, 30.2, 30.4 (overlapping signals), 30.5 (overlapping signals), 32.7, 34.2, 35.4, 70.6, 90.4, 95.2, 115.0, 117.6, 125.7, 133.8, 134.4, 134.9, 140.8, 143.2, 154.5 ppm.

HRMS (MALDI, matrix: DCTB) calcd. for C₁₅₀H₁₉₈O₆ [M]⁺: 2095.5188, found 2095.5184.

Polymer (S_p) -P1 and compound (S_p) -C1 were obtained by the same procedure above using monomer (S_p) -5.

 (S_p) -**P1**. Yield: 66%. $M_n = 8500 (PDI = 1.4)$.

(*S*_p)-C1. Yield: 8%.

HRMS (MALDI, matrix: DCTB) calcd. for C₁₅₀H₁₉₈O₆ [M]⁺: 2095.5188, found 2095.5193.

Column: TSK gel α -4000 + α -3000 + α -2500 Eluent: THF Temperature: 40 °C Flow rate: 1.0 mL / min

Temperature: 40 °C Flow rate: 1.0 mL / min

Figure S19. ¹H NMR spectrum of (R_p) -**P1**, 400 MHz, CD₂Cl₂.

Figure S20. ¹³C NMR spectrum of (R_p) -P1, 100 MHz, CD₂Cl₂.

Figure S21. ¹H NMR spectrum of (S_p) -**P1**, 400 MHz, CD₂Cl₂.

Figure S22. ¹³C NMR spectrum of (S_p) -P1, 100 MHz, CD₂Cl₂.

Figure S23. ¹H NMR spectrum of (R_p) -C1, 400 MHz, CD₂Cl₂.

Figure S24. ¹³C NMR spectrum of (R_p) -C1, 100 MHz, CD₂Cl₂.

Figure S25. High-resolution mass spectra (MALDI, matrix: DCTB) of (R_p) -C1,

Figure S26. ¹H NMR spectrum of (S_p) -C1, 400 MHz, CD₂Cl₂.

Figure S27. ¹³C NMR spectrum of (S_p) -C1, 100 MHz, CD₂Cl₂.

Figure S28. High-resolution mass spectra (MALDI, matrix: DCTB) of (S_p)-C1,

Optical properties of (R_p) -5 and (S_p) -5

Figure S29. UV-vis absorption and CD spectra of (R_p) -5 and (S_p) -5 in CHCl₃ (1.0 × 10⁻⁵ M) at room temperature.

Optical properties of (*R*_p)-C1 and (*S*_p)-C1

Figure S30. UV-vis absorption and CD spectra of (R_p) -C1 and (S_p) -C1 in CHCl₃ $(1.0 \times 10^{-5} \text{ M})$ at room temperature.

Figure S31. Photoluminescence spectra in CHCl₃ (1.0×10^{-6} M, excited at 370 nm) and CPL spectra in CHCl₃ (1.0×10^{-5} M, excited at 320 nm) of (R_p)-C1 and (S_p)-C1 at room temperature.

References

- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518–1520.
- (2) Li, H.; Powell, D. R.; Hayashi, R. K.; West, R. Macromolecules 1998, 31, 52–58.
- (3) Bondarenko, L.; Dix, I.; Hinrichs, H.; Hopf, H. Synthesis 2004, 2751–2759.