Electronic Supplementary Information:

Changing the shape of chromophores from "H-type" to "Star-type": increasing the macroscopic NLO effects in a large degree

Wenbo Wu, Can Wang, Cheng Zhong,^a Cheng Ye, Guofu Qiu, Jingui Qin, and Zhen Li*

Chart S1. The structure of polyurethanes embedded with "H-type" chromophores.

Chart S2. The structure of "H-sharp" NLO polymers PS3 and PS4.

Fig. S1. The FT-IR spectra of polymers P1-P3.

Fig. S2. The FT-IR spectra of monomers M1-M3.

Fig. S4. ¹³C NMR spectrum of monomer M1 in chloroform-*d*.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2012

Fig. S5. ¹H NMR spectrum of chromophore S5 in chloroform-*d*.

Fig. S6. ¹³C NMR spectrum of chromophore S5 in chloroform-*d*.

Fig. S7. ¹H NMR spectrum of monomer M2 in chloroform-*d*.

Fig. S8. ¹³C NMR spectrum of monomer M2 in chloroform-*d*.

Fig. S9. ¹H NMR spectrum of monomer M3 in chloroform-*d*.

Fig. S10. ¹³C NMR spectrum of monomer M3 in chloroform-*d*.

Fig. S11. ¹H NMR spectrum of chromophore S6 in chloroform-*d*.

Fig. S12. ¹³C NMR spectrum of chromophore S6 in chloroform-*d*.

Fig. S13. ¹H NMR spectrum of polymer P1 in chloroform-*d*.

Fig. S14. ¹³C NMR spectrum of polymer P1 in chloroform-*d*.

Fig. S15. ¹H NMR spectrum of polymer P2 in chloroform-*d*.

Fig. S16. ¹³C NMR spectrum of polymer P2 in chloroform-*d*.

Fig. S17. ¹H NMR spectrum of polymer P3 in chloroform-*d*.

Fig. S18. ¹³C NMR spectrum of polymer P3 in chloroform-*d*.

Fig. S19. UV-Vis spectra of P1 in different solutions. (0.02 mg/mL).

Fig. S20. UV-Vis spectra of P2 in different solutions. (0.02 mg/mL).

Fig. S21. UV-Vis spectra of P3 in different solutions. (0.02 mg/mL).

	THF	1,4-dioxane	chloroform	dichloromethane	DMF	DMSO	film
P1	496	487	508	507	512	520	509
P2	496	487	507	505	509	511	500
P3	502	495	509	512	516	519	510

Table S1. The maximum absorption of polymers (λ_{max} , nm).^{*a*}

 $^{\it a}$ The maximum absorption wavelength of polymer solutions with the concentrations fixed at 0.02 mg/mL.

Fig. S22. Absorption spectra of the film of P3 before and after poling.