Electronic Supplementary Information

Synthesis and NMR investigation of styrene glycopolymers containing D-galactose units functionalized with (4-hydroxybutoxy)benzylamine residues

Marco Pocci,* Silvana Alfei, Francesco Lucchesini, Sara Castellaro, Vincenzo Bertini

Dipartimento di Farmacia, Università di Genova Via Brigata Salerno, 13 I-16147 Genova, Italy

Numbering of the carbons of 1a\u03b2p, 1a\u03b2f, 9a\u03b2p, 9a\u03b2f, 13a\u03b2p, and 13a\u03b2f for NMR assignments

Catalytic hydrogenation of 6-azido-6-deoxy-1,2:3,4-di-O-isopropylidene-a-D-galactopyranose

A solution of azide **1** (2.30 g, 8.1 mmol) in absolute EtOH (12.5 mL) and EtOAc (17 mL) was treated with H₂ (3.4 atm) at rt for 4 h under magnetic stirring in presence of 10% Pd/C (0.6401 g) in a flanged cylindrical glass autoclave (140 mL) equipped with valves and manometer. The catalyst was removed by filtration and washed with THF (5x10 mL). Filtrate and washings were combined and concentrated at reduced pressure to afford a pale yellow oil which was subjected to FC. The mixture CHCl₃/MeOH = 96/4 allowed the eluition of the secondary amine **3** (0.73 g, 1.5 mmol, 19%). FTIR (film, cm⁻¹): 3326 (NH). ¹H-NMR (CDCl₃, δ ppm): 1.32 (s, 6H); 1.33 (s, 6H); 1.44 (s, 6H); 1.54 (s, 6H); 2.86 (m, 4H); 3.82 (m, 2H); 4.21 (dd, 2H, J_1 = 1.9 Hz, J_2 = 8.0 Hz); 4.30 (dd, 2H, J_1 = 2.3 Hz, J_2 = 5.1 Hz); 4.59 (dd, 2H, J_1 = 2.3 Hz, J_2 = 7.9 Hz); 5.53 (d, 2H, J=5.0 Hz). ¹³C-NMR: 24.64, 25.16, 26.21, 26.34, 49.55, 66.98, 70.84, 71.06, 72.06, 96.58, 108.61, 109.30. The mixture CHCl₃/MeOH = 20/80 allowed the eluition of **2** (1.10 g, 4.2 mmol, 53%) as colorless oil with the same spectroscopic data of the amine obtained from LiAlH₄.

N,*N*-Bis(1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranosyl)benzamide (4)

Scheme 2

A solution of **3** (1.35 g, 2.7 mmol) and Et₃N (2.09 g, 20.7 mmol) in CH₂Cl₂ (13 mL) was cooled to 0 °C, added with benzoyl chloride (0.7267 g, 5.2 mmol), left under magnetic stirring for 3 h at rt, hydrolyzed with H₂O (10 mL, pH = 7-8) and extracted with CH₂Cl₂ (3x15 mL). The extracts were dried (MgSO₄) and concentrated at reduced pressure to afford crude **4** which was purified by FC using a mixture petroleum ether/acetone = 7/3 as eluent followed by crystallization in the form of a white solid from diisopropyl ether (0.4438 g, 0.73 mmol, 27%). Mp 127-132°C. Purity 98% by HPLC. [α]_D = - 45.2 (*c* 1.08, CHCl₃, 22 °C). FTIR (KBr, cm⁻¹): 1625 (C=O, amide). ¹H-NMR (CDCl₃, δ ppm): 1.19 (s, 3H); 1.25 (s, 3H); 1.32 (s, 6H); 1.36 (s, 3H); 1.46 (s, 3H); 1.49 (s, 3H); 1.53 (s, 3H); 3.50-3.74 (m, 3H); 3.87-3.95 (m, 3H); 4.27-4.35 (m, 4H); 4.57 (dd, 2H, *J* = 6.6 Hz); 5.50 (dd, 2H, *J* = 4.5 Hz); 7.24-7.41 (m, 5H). ¹³C-NMR: 24.57, 24.66, 24.90, 25.17, 25.71, 25.99, 26.10 (2C), 46.62, 50.61, 66.08, 66.39, 70.36, 70.69, 70.79, 71.07 (2C), 71.82, 96.30, 96.45, 108.58, 108.92, 109.38 (2C), 126.95, 128.17, 128.97, 137.17, 172.78. Found: C, 61.3; H, 7.5; N 2.2. C₃₁H₄₃NO₁₁ requires C, 61.5; H, 7.2; N 2.3.

Alternative synthesis of 4-(4-hydroxybutoxy)benzylamine (8)

4-[4-(2-Tetrahydropyranyloxybutoxy)]benzaldehyde (5)

NaH (60% suspension in white oil, 2.50 g, 62.5 mmol) was washed with dry pentane (3x4mL), suspended in dry DMF (24 mL), treated under N₂ with a solution of 4-hydroxybenzaldehyde (6.90 g, 56.5 mmol) in dry DMF (24 mL) and stirred at rt for 60 min. The mixture was then cooled to 0 °C, treated with a solution of 2-(4-chlorobutoxy]tetrahydropyran¹ (10.80 g, 56.0 mmol) in dry DMF (11.5 mL) and stirred at 70 °C for 31 h. The mixture was hydrolyzed with 10% KOH (20 mL,

pH = 14), extracted with Et₂O (3x50 mL), then with CH₂Cl₂ (3x50 mL) and the extracts were combined and dried (MgSO₄). The removal of the solvent at reduced pressure afforded **5** as an oil which was purified by filtration through a short silica gel column (h = 100 mm, ϕ = 20 mm) using a mixture of petroleum ether/EtOAc = 1/1 as eluent (200 mL) (14.59 g, 52.4 mmol, 93%). Purity 98% by HPLC. FTIR (KBr, cm⁻¹): 2943, 2872 (THP); 1691 cm⁻¹ (C=O, aldehyde). ¹H-NMR (CDCl₃): δ 1.75 (m, 10H), 3.49 (m, 2H), 3.85 (m, 2H), 4.09 (t, 2H, *J* = 6.3 Hz), 4.60 (t, 1H, *J* = 2.7 Hz), 6.98-7.02 (m, 2H), 7.80-7.85 (m, 2H), 9.87 (s, 1H). ¹³C-NMR: δ 19.68, 25.47, 26.10, 26.25, 30.76, 62.41, 66.99, 68.15, 98.94, 114.76, 129.81, 131.97, 164.18, 190.76. Found: C, 69.3; H, 8.05. C₁₆H₂₂O₄ requires C, 69.0; H, 8.0.

4-(4-Hydroxybutoxy)benzaldehyde² (6)

A solution of **5** (8.49 g, 30.5 mmol) in MeOH (20 mL) was treated with a solution of 12 N HCl (5.8 mL) in H₂O (11.5 mL) at 70 °C for 50 h then the mixture was added with 10 % NaOH (100 mL, pH=14) and extracted with CH₂Cl₂ (5x50 mL). The extracts were dried (MgSO₄), concentrated at reduced pressure and filtered through a short silica gel column (h = 120 mm; ϕ = 20 mm) using a mixture of petroleum ether/EtOAc = 1/1 as eluent (250 mL) to afford **6** as an orange oil² (4.46 g, 23.0 mmol, 75%). Purity 99% by HPLC. FTIR (KBr, cm⁻¹): 3419 (OH); 1688 (C=O). ¹H-NMR (CDCl₃): δ 1.83 (m, 4H), 2.75 (s, 1OH), 3.72 (t, 2H, *J* = 6.3 Hz), 4.07 (t, 2H, *J* = 6.3 Hz), 6.95-6.99 (m, 2H), 7.00-7.83 (m, 2H), 9.84 (s, 1H). ¹³C-NMR: δ 25.59, 29.09, 62.05, 68.18, 114.77, 129.68, 132.03, 164.17, 191.05. GC/MS (CI, m/z): 195 (M⁺+1, 100%), 177 (M⁺+1 - H₂O, 50%). Found: C, 68.0; H, 7.5. C₁₁H₁₄O₃ requires C, 68.0; H, 7.3.

4-(4-Hydroxybutoxy)benzaldoxime (7)

A solution of **6** (4.46 g, 23.0 mmol) in 95% EtOH (34.2 mL) was treated with a solution of NH₂OH·HCl (4.19 g, 60.3 mmol) in dry pyridine (9.2 mL) at rt for 45 h, hydrolyzed with H₂O (35

ml) and extracted with EtOAc (4x35 mL). The extracts were dried (MgSO₄), concentrated at reduced pressure and passed through a short silica gel column (h = 150 mm; ϕ = 20 mm) using a mixture of petroleum ether/acetone = 1/1 as eluent (250 mL) to afford **7** as a waxy solid which turned to crystalline by treatment with diisopropyl ether (3.21 g, 15.3 mmol, 67%). Mp 103-105 °C. Purity 99% by HPLC. FTIR (KBr, cm⁻¹): 3179 (OH); 1476 (C=N). ¹H-NMR (DMSO-*d*₆): δ 1.65 (m, 4H), 3.45 (t, 2H, *J* = 6.4 Hz), 3.99 (t, 2H, *J* = 6.4 Hz), 4.44 (bs, 1OH), 6.93-6.96 (m, 2H), 7.31-7.52 (m, 2H), 8.06 (s, 1OH), 10.96 (s, 1H). ¹³C-NMR: δ 27.27, 30.83, 62.27, 69.38, 116.54, 127.34, 129.71, 149.54, 161.43. Found: C, 63.4; H, 7.5; N, 6.8. C₁₁H₁₅NO₃ requires C, 63.1; H, 7.2; N, 6.7.

4-(4-Hydroxybutoxy)benzylamine (8)

A mixture of oxime **7** (6.96 g, 33.3 mmol), absolute EtOH (130 mL) and 2 N NaOH (130 mL) was treated with Ni-Al Raney alloy (9.05 g) at rt under stirring for 2 h, then Ni-Al Raney alloy was removed by filtration and washed with EtOH. Filtrate and washings were combined, concentrated at reduced pressure, taken with THF and washed with satd NaCl solution. The extracts were dried (MgSO₄), concentrated at reduced pressure to give crude **8** (4.91 g, 25.1 mmol, 76%) as an oil which turned to a waxy solid by treatment with petroleum ether. **8** showed spectral data coincident with those of 4-(4-hydroxybutoxy)benzylamine synthesized as reported in the main paper.

Synthesis of ethyl 4-(4-cyanophenoxy)butanoate (9)

A 60% oil dispersion of NaH (1.88 g, 47.1 mmol) was washed two times with dry pentane, suspended in dry DMF (37 mL), cooled to 0 °C and treated under N₂ with a solution of 4cyanophenol (5.10 g, 42.2 mmol) in dry DMF (15 mL). The suspension was left to reach rt, stirred for 1 h, cooled to 0 °C, added with ethyl 4-bromobutanoate (8.60 g, 44.0 mmol) and left under stirring overnight. The suspension was hydrolyzed with water (25 ml, pH = 8-9), extracted with Et₂O (3x30 mL) and dried (MgSO₄). The removal of the solvent at reduced pressure afforded **9** as a solid which was crystallized from hexane: (9.19 g, 94%). Mp 60-62 °C. Purity 99% by HPLC. FTIR

5

(KBr, cm⁻¹): 2219 (CN), 1732 (C=O, ester). ¹H-NMR (CDCl₃, δ ppm): 1.26 (t, 3H, *J* = 7.1 Hz); 2.09-2.18 (m, 2H); 2.52 (t, 2H, *J* = 7.3 Hz); 4.07 (t, 2H, *J* = 6.2 Hz); 4.15 (q, 2H, *J* = 7.2 Hz); 6.96-7.60 (m, 4H). ¹³C-NMR: 14.23, 24.36, 30.56, 60.57, 67.17, 104.04, 115.21, 119.20, 134.01, 162.14, 172.92. Found: C, 71.6; H, 7.3; N 6.2. C₁₃H₁₅NO₂ requires C, 71.9; H, 7.0; N 6.45.

Run	Monomer g (mmol)	AIBN mg (%)	Solvent Ml	Time H	Polymer g (%)
1.21 (3.91)	12.1 (1.0)	20	24	0.554 (45.8)	
2	1αβ <i>pf</i>		DMSO		Ρ1αβ <i>pf</i>
	1.50 (4.85)	15.4 (1.0)	26	72	1.10 (73.3)

References

1. Jian Guan, D. E. Kyle, L. Gerena, Quang Zhang, W. K. Milhous, A-J. Lin, *J. Med. Chem.*, 2002, **45**, 2741-2748.

2. S. Peterli, D. Hubmann,; U. Séquin, H. Mett, P. Traxler, Helv. Chim. Acta, 1994, 77, 59-69.

Figure S1. ¹H and ¹³C NMR spectra of $1\alpha\beta p$ in DMSO-*d6*

Figure S2. ¹H and ¹³C NMR spectra of 7 in CDCl₃

Figure S3. ¹H and ¹³C NMR spectra of 8 in CDCl₃.

Figure S4. ¹H and ¹³C NMR spectra of 10 in CDCl₃.

Figure S5. ¹H and ¹³C NMR spectra of **11** in CDCl₃.

Figure S6. ¹H and ¹³C NMR spectra of **12** in acetone-d6.

Figure S7. ¹H and ¹³C NMR spectra of hydrochloride of **12** in DMSO-*d6*.

Figure S8. ¹H NMR spectrum of $13\beta p$ in DMSO-*d6*.

Figure S9. ¹³C NMR spectrum of $13\beta p$ in DMSO-*d6*.

Figure S10. ¹H NMR spectrum of $15\beta p$ in CDCl₃.

