Ms. Ref. No.: PY-ART-08-2012-020655.R1

Supplementary Materials

Electrochemically reduced graphene oxide-enhanced electropolymerization of poly-xanthurenic acid for direct, "signal-on" and high sensitive impedimetric sensing of DNA

Tao Yang, Xiao Li, Qianhe Li, Xiuhong Guo, Qian Guan, and Kui Jiao *

State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

The electroactive surface areas of the electrodes

Also, the electroactive areas of the modified CPEs were obtained according to the Randles-Sevcĭk equation [1]:

$$i_{pa} = 2.69 \times 10^5 \text{AD}^{1/2} \text{n}^{3/2} \text{v}^{1/2} \text{C}$$

where i_p refers to the anodic peak current, n is the number of electrons participating in the redox reaction and is equal to 1, A is the area of the electrode (cm²), D is the diffusion coefficient of the molecule and is 6.70×10^{-6} cm²s⁻¹. C is the concentration of the [Fe(CN)₆]^{3-/4-} in the solution and is 1.0 mmol/L, and v is the scan rate (V s⁻¹).

Table S1. The voltammetric parameters of CVs and the electroactive areas of the various electrodes in Fig. 1S

Electrodes	i _{pa} [a]	i _{pc} [b]	E _{pa} [c]	E _{pc} [d]	$\triangle E_p^{[e]}$	Electroactive areas
	$[10^{-5}A]$	$[10^{-5}A]$	[V]	[V]	[V]	cm^2
ERGNO/CPE	2.940	3.032	0.257	0.050	0.207	0.1377±0.006
PXa/CPE	0.120	0.110	0.345	0.080	0.265	0.0499 ± 0.005
PXa/ERGNO/CPE	2.246	3.084	0.246	0.058	0.188	0.1401 ± 0.008

[[]a] The oxidation peak current. [b] The reduction peak current. [c] The oxidation peak potential. [d] The reduction peak potential. [e] The peak-potential separation.

The active surface areas of ERGNO/CPE, PXa/CPE, PXa/ERGNO/CPE can be calculated to be (0.1377 ± 0.006) , (0.0499 ± 0.005) and (0.1401 ± 0.008) cm² (average of three measurements), respectively.

1 X. X. Wang, T. Yang, X. Li and K. Jiao, Biosens. Bioelectron., 2011, 26, 2953.