## Organocatalytic Synthesis and Post-Polymerization Functionalization of Propargyl-Functional Poly(Carbonate)s

Sarah Tempelaar,<sup>a</sup> Ian A. Barker,<sup>a</sup> Vinh X. Truong,<sup>a</sup> Daniel J. Hall,<sup>a</sup> Laetitia Mespouille,<sup>b</sup> Philippe Dubois<sup>b</sup> and Andrew P. Dove.<sup>a\*\*</sup>

<sup>a</sup>Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K. <sup>b</sup>Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium.

## **Supplementary Information**

- **Figure S1.** a) MALDI-TOF MS spectra in reflectron ion-mode showing the isotope pattern of DP10 polymer chains of PMPC initiated from benzyl alcohol from polymerizations in CH<sub>2</sub>Cl<sub>2</sub> (top) and CDCl<sub>3</sub> (bottom); b) Predicted isotopic distributions of DP10 polymer chains expected for PMPC with all protons retained (top), with 1, 2 and 3 protons exchanged with deuterium in a 1:1:1 ratio (middle) and with all acetylenic protons exchanged (top).
- Figure S2. GPC chromatograms of block copolymers and their corresponding macro-initiator: (a) BnO-PLA<sub>18</sub>-OH ( $M_n = 4\ 200\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.09$ ) and BnO-PLA<sub>18</sub>-*b*-PMPC<sub>20</sub>-OH ( $M_n = 8\ 740\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.08$ ); (b) BnO-PMPC<sub>20</sub>-OH ( $M_n = 4\ 540\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.12$ ) and BnO-PMPC<sub>20</sub>-*b*-PLA<sub>24</sub>-OH ( $M_n = 10\ 350\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.09$ ); (c) MeO-PEO<sub>114</sub>-OH ( $M_n = 6\ 790\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.03$ ) and MeO-PEO<sub>114</sub>-*b*-PMPC<sub>18</sub>-OH ( $M_n = 11\ 020\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.06$ ); (d)

BnO-PMPC<sub>17</sub>-OH ( $M_n = 4\ 010\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.11$ ) and BnO-PMPC<sub>17</sub>-*b*-PMAC<sub>19</sub>-OH ( $M_n = 8\ 110\ \text{g mol}^{-1}$ ;  $\mathcal{D}_M = 1.09$ ).

- **Table S1.**CuAAC functionalization of BnO-PMPC10-OH.
- **Figure S3.** MALDI-ToF MS spectra of PMPC after CuAAC functionalization with 1-azidooctane with added NaTFA following purification with Cuprisorb<sup>TM</sup> beads (top), added NaTFA before purification (middle); and no added NaTFA before purification (bottom) key (■) Cu<sup>+</sup> charged and (■) Na<sup>+</sup> charged chains.
- **Figure S4.** <sup>1</sup>H NMR spectra of PMPC after functionalization with benzyl azide in CDCl<sub>3</sub> (top) and of with 3-azido-7-hydroxylcoumarin in *d*-DMSO (bottom) (400 MHz, 298 K; \* = residual CDCl<sub>3</sub>,  $** = H_2O$ , \*\*\* = residual *d*-DMSO).
- Figure S5. MALDI-ToF MS spectrum of PMPC after CuAAC functionalization with 3-azido-7hydroxylcoumarin (left) shows distribution with PMPC fully functionalized with 3-azido-7-hydroxylcoumarin azide (•) and polymer chains with 1 (•)or 2 (•) unfunctionalized propargyl groups.
- **Figure S6.** DMF solutions of PMPC, 3-azido-7-hydroxylcoumarin, PMPC + 3-azido-7hydroxylcoumarin, PMPC after functionalization with 3-azido-7-hydroxylcoumarin (A+C, from left to right) and of a further diluted solution of PMPC after functionalization (B+D) show fluorescence when irradiated at 365 nm with a UV lamp for the clicked polymer only (C+D).
- **Table S2.**Radical 'thiol-yne' functionalization of BnO-PMPC12-OH.
- **Figure S7.** <sup>1</sup>H NMR spectra of PMPC after functionalization with benzyl mercaptan in CDCl<sub>3</sub> (top) and with 1-thioglycerol in *d*-DMSO (bottom) (400 MHz, 298 K; \* = residual CDCl<sub>3</sub>/ *d*-DMSO, \*\* = H<sub>2</sub>O).
- Figure S8. MALDI-ToF MS spectrum of PMPC after 'thiol-yne' functionalization with benzyl mercaptan showing a main distribution of fully functionalized polymer (●) and cross-linked, benzyl functionalized PMPC (●).



**Figure S1.** a) MALDI-TOF MS spectra in reflectron ion-mode showing the isotope pattern of DP10 polymer chains of PMPC initiated from benzyl alcohol from polymerizations in  $CH_2Cl_2$  (top) and  $CDCl_3$  (bottom); b) Predicted isotopic distributions of DP10 polymer chains expected for PMPC with all protons retained (top), with 1, 2 and 3 protons exchanged with deuterium in a 1:1:1 ratio (middle) and with all acetylenic protons exchanged (top).



**Figure S2.** GPC chromatograms of block copolymers and their corresponding macro-initiator: (a) BnO-PLA<sub>18</sub>-OH ( $M_n = 4\ 200\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.09$ ) and BnO-PLA<sub>18</sub>-*b*-PMPC<sub>20</sub>-OH ( $M_n = 8\ 740\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.08$ ); (b) BnO-PMPC<sub>20</sub>-OH ( $M_n = 4\ 540\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.12$ ) and BnO-PMPC<sub>20</sub>-*b*-PLA<sub>24</sub>-OH ( $M_n = 10\ 350\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.09$ ); (c) MeO-PEO<sub>114</sub>-OH ( $M_n = 6\ 790\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.03$ ) and MeO-PEO<sub>114</sub>-*b*-PMPC<sub>18</sub>-OH ( $M_n = 11\ 020\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.06$ ); (d) BnO-PMPC<sub>17</sub>-OH ( $M_n = 4\ 010\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.11$ ) and BnO-PMPC<sub>17</sub>-*b*-PMAC<sub>19</sub>-OH ( $M_n = 8\ 110\ g\ mol^{-1}$ ;  $\mathcal{D}_M = 1.09$ ).

| Azide                      | $M_n^{b}$ (g mol <sup>-1</sup> )        | $M_{ m w}/M_{ m n}^{ m b}$            |
|----------------------------|-----------------------------------------|---------------------------------------|
| -                          | 2,240 <sup>c</sup> / 4,600 <sup>d</sup> | 1.33 <sup>c</sup> / 1.18 <sup>d</sup> |
| 1-azidooctane              | 5,560 <sup>c</sup>                      | 1.16 <sup>c</sup>                     |
| benzyl azide               | 2,670 <sup>c</sup>                      | 1.33 <sup>c</sup>                     |
| TEG azide                  | 2,480 <sup>c</sup>                      | 1.28 <sup>c</sup>                     |
| 3-azido-7-hydroxylcoumarin | 8,610 <sup>d</sup>                      | 1.23 <sup>d</sup>                     |

Table S1. CuAAC functionalization of BnO-PMPC<sub>10</sub>-OH.<sup>a</sup>

<sup>a</sup> [PMPC]<sub>0</sub> = *ca.* 0.34 M in THF or DMF, 1.05 eq. azide, 25 °C, 24 h. <sup>b</sup> Measured by GPC analysis using. <sup>c</sup> THF or <sup>d</sup> DMF as eluent.



**Figure S3.** MALDI-ToF MS spectra of PMPC after CuAAC functionalization with 1-azidooctane with added NaTFA following purification with Cuprisorb<sup>TM</sup> beads (top), added NaTFA before purification (middle); and no added NaTFA before purification (bottom) - key ( $\blacksquare$ ) Cu<sup>+</sup> charged and ( $\blacksquare$ ) Na<sup>+</sup> charged chains.



**Figure S4.** <sup>1</sup>H NMR spectra of PMPC after functionalization with benzyl azide in CDCl<sub>3</sub> (top) and of with 3-azido-7-hydroxylcoumarin in *d*-DMSO (bottom) (400 MHz, 298 K; \* = residual CDCl<sub>3</sub>, \*\* = H<sub>2</sub>O, \*\*\* = residual *d*-DMSO).



**Figure S5.** MALDI-ToF MS spectrum of PMPC after CuAAC functionalization with 3-azido-7-hydroxylcoumarin (left) shows distribution with PMPC fully functionalized with 3-azido-7-hydroxylcoumarin azide (•) and polymer chains with 1 (•) or 2 (•) unfunctionalized propargyl groups.



**Figure S6.** DMF solutions of PMPC, 3-azido-7-hydroxylcoumarin, PMPC + 3-azido-7-hydroxylcoumarin, PMPC after functionalization with 3-azido-7-hydroxylcoumarin (A+C, from left to right) and of a further diluted solution of PMPC after functionalization (B+D) show fluorescence when irradiated at 365 nm with a UV lamp for the clicked polymer only (C+D).

| Thiol            | $M_n^{b}$ (g mol <sup>-1</sup> )        | $M_{ m w}/M_{ m n}^{ m b}$            |
|------------------|-----------------------------------------|---------------------------------------|
| -                | 2,370 <sup>c</sup> / 5,810 <sup>d</sup> | 1.29 <sup>c</sup> / 1.17 <sup>d</sup> |
| 1-dodecanethiol  | 5,700 <sup>c</sup>                      | 1.80 <sup>c</sup>                     |
| benzyl mercaptan | 3,570 <sup>c</sup>                      | 1.36 <sup>c</sup>                     |
| 1-thioglycerol   | 7,830 <sup>c</sup>                      | 1.22 <sup>c</sup>                     |
| mercaptoethanol  | 7,830 <sup>d</sup>                      | 1.36 <sup>d</sup>                     |

Table S2. Radical 'thiol-yne' functionalization of BnO-PMPC<sub>12</sub>-OH.<sup>a</sup>

<sup>a</sup>  $[PMPC]_0 = ca. 0.15$  M in dioxane, 10 eq. thiol, 25 °C, 24 h. <sup>b</sup> Measured by GPC analysis using. <sup>c</sup> THF or <sup>d</sup> DMF as eluent.



**Figure S7.** <sup>1</sup>H NMR spectra of PMPC after functionalization with benzyl mercaptan in CDCl<sub>3</sub> (top) and with 1-thioglycerol in *d*-DMSO (bottom) (400 MHz, 298 K; \* = residual CDCl<sub>3</sub>/*d*-DMSO, \*\* =  $H_2O$ ).



**Figure S8.** MALDI-ToF MS spectrum of PMPC after 'thiol-yne' functionalization with benzyl mercaptan showing a main distribution of fully functionalized polymer ( $\bullet$ ) and cross-linked, benzyl functionalized PMPC ( $\bullet$ ).