Supporting Information

Thermally cross-linkable hole transporting polymer synthesized by living anionic polymerization for effective electron blocking and reduction of exciton quenching in multilayer polymer light emitting diodes

Beom-Goo Kang,^{*a,b*} Hongkyu Kang,^{*a,b*} Nam-Goo Kang,^{*a,b*} Chang-Lyoul Lee,^{*c*,*} Kwanghee Lee,^{*a,b*} and Jae-Suk Lee^{*a,b*,*}

^{*a*} School of Materials Science and Engineering, Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712, Korea

 ^b Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712, Korea
^c Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712, Korea

*Corresponding Authors

Dr. Chang-Lyoul Lee, E-mail: vsepr@gist.ac.kr, Tel: +82-62-715-3347

Prof. Jae-Suk Lee, E-mail: jslee@gist.ac.kr, Tel: +82-62-715-2306

TGA of d-PBAB

Fig. S1 Thermogravimetric analysis (TGA) thermograms of poly(**A**) ($M_n = 30,000$) and d-P**BAB** ($M_n = 24,300$) under nitrogen with a heating rate of 10 °C/min. The thermal stability of d-P**BAB** was compared with that of poly(**A**) without a cross-linker using TGA. Although the molecular weight of d-P**BAB** was lower than that of poly(**A**), d-P**BAB** (5 wt% loss at 392 °C) exhibited a higher thermal stability than poly(**A**) (5 wt% loss at 383 °C) due to cross-linking.^{1,2}

TCSPC of d-PBAB and cross-linked d-PBAB

Fig. S2 PL decay profiles of (a) d-P**BAB** solution, d-P**BAB** film (b) before and (c) after thermal cross-linking at 240 °C for 50 min.

Table S1	Exciton	lifetimes	$(\tau_{\rm avr})$	of	d-PBAB	solution,	d-PBAB	film	before	and	after	thermal
cross-link	ing at 24	0 °C for 5	0 min	a								

samples	monitored wavelength, nm	τ_1 (<i>f</i> ₁), ns	τ_2 (f_2), ns	χ^2	$ au_{\rm avr}$, ns
d-PBAB solution	395	1.13 (0.84)	0.39 (0.16)	1.03	1.01
d-PBAB solution	430	1.16 (0.89)	0.61 (0.11)	1.05	1.10
d-P BAB film	400	0.72 (0.23)	0.23 (0.77)	1.24	0.34
d-P BAB film	430	1.46 (0.18)	0.35 (0.82)	1.22	0.55
cross-linked d-P BAB film	400	0.58 (0.05)	0.11 (0.95)	1.37	0.13
cross-linked d-P BAB film	430	1.16 (0.15)	0.21 (0.85)	1.54	0.35

^{*a*} The PL decay curves were fitted with a biexponential function to calculate the lifetime of d-P**BAB**. The amplitude weighted average exciton lifetime (τ_{avr}) was $f_1\tau_1 + f_2\tau_2$, where f_1 and f_2 are fractional intensities and τ_1 and τ_2 are lifetimes. CV of cross-linked d-PBAB

Fig. S3 Cyclic voltammograms of ferrocene and d-P**BAB** film cross-linked at 240 °C for 50 min. HOMO energy level of cross-linked d-P**BAB** was calculated from the onset oxidation potential $(E_{ox}(onset))$ based on the reference energy level of ferrocene (4.80 eV) below vacuum level (Figure S4): E_{HOMO} (eV) = $-(E_{ox}(onset) - E_{1/2}(ferrocene) + 4.80 \text{ eV})$. LUMO energy level was determined by the difference between the HOMO energy level and the optical band gap (E_g) : E_{LUMO} (eV) = $E_{HOMO} + E_g$.³⁻⁵ The $E_{1/2}$ was measured to be 0.456 V vs. Ag/AgCl electrode in acetonitrile.

References

- (1) Kim, J.-P.; Lee, W.-Y.; Kang, J.-W.; Kwon, S.-K.; Kim, J.-J.; Lee, J.-S. *Macromolecules* **2001**, *34*, 7817.
- (2) Lee, K.-S.; Lee, J.-S. Chem. Mater. 2006, 18, 4519.
- (3) Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.; Huang, F.; Ka, J.-W.; Yip, H.-L.; Tian, Y.; Jen,
- A. K.-Y. Chem. Mater. 2008, 20, 413.
- (4) Lim, B.; Hwang, J.-T.; Kim, J. Y.; Ghim, J.; Vak, D.; Noh, Y.-Y.; Lee, S.-H.; Lee, K.;
- Heeger, A. J.; Kim, D.-Y. Org. Lett. 2006, 8, 4703.
- (5) Su, W.-F.; Chen, R.-T.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 352.