Electronic Supplementary Information

Metal-Free Click Polymerizations of Activated Azide

and Alkynes

Qiang Wang,^a Hongkun Li,^a Qiang Wei,^a Jing Zhi Sun,^a Jian Wang,^a Xiao A. Zhang,^a Anjun Qin,^{*,a} and Ben Zhong Tang^{*,a,b}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

^b Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Content

Fig. S1 19 F NMR spectra of chloroform- <i>d</i> solutions of perfluorobenzophenone 1 (A) and d	liazide
monomer 2 (B).	(2)
Fig. S2 HRMS spectra of monomer 2 (calcd 408.0006).	(3)
Scheme S1 Synthetic routes to polytriazoles by metal-free click polymerization of ordinary al	lkynes
and azide.	(3)
Table S1 Reaction of ordinary aliphatic and aromatic azides 4 and 5 with alkynes 3a and 3b.	(3)
Fig. S3 FT-IR spectra of monomers 2 (A), 3b (B) and polymer PIb (C).	(4)
Fig. S4 FT-IR spectra of monomers 2 (A), 3c (B), and polymer PIc (C).	(4)
Fig. S5 ¹ N NMR spectra of DMF- d_7 solution of monomer 3b (A), polymer PIb (B). The s	olvent
peaks are marked with asterisks.	(5) 1

Fig. S6 1 N NMR spectra of DMF- d_{7} solution of monomer 3c (A), polymer PIc (B). The solvent and
water peaks are marked with asterisks.(5)Fig. S7 13 C NMR spectra of DMF- d_{7} solution of monomer 3a (A), diazide 2 (B) and polymer PIa
(C). The solvent and water peaks are marked with asterisks.(6)Fig. S8 13 C NMR spectra of DMF- d_{7} solution of monomer 3b (A), diazide 2 (B) and polymer PIb
(C). The solvent and water peaks are marked with asterisks.(6)Fig. S9 13 C NMR spectra of DMF- d_{7} solution of monomer 3c (A), diazide 2 (B) and polymer PIb
(C). The solvent and water peaks are marked with asterisks.(6)Fig. S9 13 C NMR spectra of DMF- d_{7} solution of monomer 3c (A), diazide 2 (B) and polymer PIc (C).
The solvent and water peaks are marked with asterisks.(7)

Fig. S1 ¹⁹F NMR spectra of chloroform-*d* solutions of perfluorobenzophenone **1** (A) and diazide monomer **2** (B).

Fig. S2 HRMS spectra of monomer 2 (calcd 408.0006).

Scheme S1 Synthetic routes to polytriazoles by metal-free click polymerization of ordinary alkynes and azide.

Table S1 Reaction of ordinary aliphatic and aromatic azides 4 and 5 with alkynes 3a and 3b.

no.	monomer	polymer	$M_{ m w}{}^{ m b}$	PDI ^b	yield
1	3a + 4	PIIa	1800	1.00	trace
2	3b + 4	₽ IIb	1900	1.01	trace
3	3a + 5	PIIc	/	/	/

^{*a*} Reactions were carried out in DMF at 100 °C under nitrogen for 12 h at a monomer concentration of 0.4 M. ^{*b*} Weight-average molecular weight (M_w) and polydispersity index (PDI = M_w/M_n) were estimated by gel permeation chromatography (GPC) in DMF/0.05 M LiBr solution on the basis of a PMMA calibration.

Fig. S3 FT-IR spectra of monomers 2 (A), 3b (B) and polymer PIb (C).

Fig. S4 FT-IR spectra of monomers 2 (A), 3c (B), and polymer PIc (C).

Fig. S5 ¹N NMR spectra of DMF- d_7 solution of monomer **3b** (A), polymer PIb (B). The solvent peaks are marked with asterisks.

Fig. S6 ¹N NMR spectra of DMF- d_7 solution of monomer **3c** (A), polymer PIc (B). The solvent and water peaks are marked with asterisks.

Fig. S7 ¹³C NMR spectra of DMF- d_7 solution of monomer **3a** (A), diazide **2** (B) and polymer PIa (C). The solvent and water peaks are marked with asterisks.

Fig. S8 ¹³C NMR spectra of DMF- d_7 solution of monomer **3b** (A), diazide **2** (B) and polymer PIb (C). The solvent and water peaks are marked with asterisks.

Fig. S9 ¹³C NMR spectra of DMF- d_7 solution of monomer **3c** (A), diazide **2** (B) and polymer PIc (C). The solvent and water peaks are marked with asterisks.