Supporting Information

Binuclear Chromium-Salan Complex Catalyzed Alternating
 Copolymerization of Epoxides and Cyclic Anhydrides

1. Synthesis of compounds 6-8, 12 and 13

Scheme S1. Synthetic routes of complexes band \mathbf{c}

Synthesis of compound 6. To a stirred solution of compound 5 (5 g) dissolved in the dried THF of 40 mL was added dropwise a solution of $0.14 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 5 mL dried

THF. The reaction mixture was stirred at the room temperature. After 3 h , methanol was added slowly. When the resulting solution was adjusted to 7 of pH using HCl (1 $\mathrm{mol} / \mathrm{L}$), water was added into the solution. The resultant mixture was extracted by ethyl acetate three times. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by chromatography (silica gel, dichloromethane/methanol $=20 / 1$) to obtain the compound $\mathbf{6}$ as a white solid ($3.4 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}, 25{ }^{\circ} \mathrm{C}$): $\delta 4.96$ (d, $J=4.0 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.97 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}\right), 7.16(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, BINOL), 7.27 (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}), 7.99(\mathrm{~s}$, 1H, BINOL). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}, 25{ }^{\circ} \mathrm{C}$): $\delta 61.1\left(\mathrm{CH}_{2}\right), 113.3(\mathrm{C}), 122.9$ $(\mathrm{CH}), 124.3(\mathrm{CH}), 125.7(\mathrm{CH}), 126.4(\mathrm{CH}), 127.8(\mathrm{CH}), 128.9(\mathrm{C}), 130.8(\mathrm{C}), 133.6$ (C), 152.2 (C). HRMS: calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4}\right]^{-}([\mathrm{M}-\mathrm{H}])^{-}: 357.1491$; Found: 357.4107.

Synthesis of Compound 7. To a solution of compound $6(3.44 \mathrm{~g}, 9.6 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ was added $\mathrm{PBr}_{3}(0.35 \mathrm{~mL}, 3.65 \mathrm{mmol})$. The white solid dissolved slowly when the mixture was stirred at room temperature for 2 h . The reaction mixture was then treated with cold water (30 mL) with vigorous stirring for 2 min . The organic layer was separated and the aqueous residue was extracted with CHCl_{3} (2 $\times 50 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried in vacuum to give the desired product as a pale yellow solid. The compound 7 was used in the following reactions without further purification. Yield: 4.23 g (97\%).

Synthesis of Compound 8. To a stirred solution of 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.20 \mathrm{~g}, 5.12 \mathrm{mmol}$) in methanol (40 mL) was added dropwise a solution of N, N^{\prime}-dimethylethylendiamine ($0.56 \mathrm{~g}, 6.4 \mathrm{mmol}$) in methanol (10 mL). The solution was stirred for 2 h , and $\mathrm{NaBH}_{4}(0.4 \mathrm{~g}, 10.6 \mathrm{mmol})$ was added in small portions. After continuous stirring of 1 h , another portion of $\mathrm{NaBH}_{4}(0.4 \mathrm{~g}, 10.6 \mathrm{mmol})$ was added and the reaction mixture was stirred over night at room temperature. Then the solvent was removed under vacuum. Water and HCl (5 $\mathrm{mol} / \mathrm{L}$) were added into the mixture till the $\mathrm{pH}=2$. Then the water phase was washed by ethyl acetate three times. After that NaHCO_{3} was added into the water phase till the $\mathrm{pH}=7$. The water phase was extracted by ethyl acetate and the extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under vacuum to give the desired product $\mathbf{8}$ as a purple solid.($1.14 \mathrm{~g}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.59\left(\mathrm{t}, \mathrm{J}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75\left(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.81$ (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.20(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$: $\delta 29.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $36.5\left(\mathrm{CH}_{3}\right)$, 42.1 $\left(\mathrm{CH}_{3}\right), 49.1\left(\mathrm{CH}_{2}\right), 56.5\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{2}\right), 117.9(\mathrm{C}), 123.7(\mathrm{C}), 124.1(\mathrm{C}), 128.7$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 156.7(\mathrm{C}) . \mathrm{HRMS}:$ calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}\right]^{+}([\mathrm{M}+\mathrm{H}])^{+}$: 307.2671; Found: 307.5436.

Synthesis of compound 12. To a stirred solution of compound $\mathbf{1 1}(5 \mathrm{~g})$ in the dried THF (50 mL) was added into 0.28 g LiAlH 44 in 5 mL dried THF. The reaction mixture was stirred at room temperature. After 3 h , MeOH was added slowly and HCl (1
$\mathrm{mol} / \mathrm{L}$) was also added till the pH of the solution is 7 . Then water was added into the solution and the resulting mixture was extracted by ethyl acetate three times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum. The resulting residue was purified by chromatography (silica gel, dichloromethane/methanol = 10/1) to obtain the compound 12 as a white solid (3 g , 60%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 0.91$ (d, J = 6.0, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.77(\mathrm{~d}, \mathrm{~J}=$ 6.0, 3H, CH3), 4.55 (m, 1H, CH), 5.03 (s, 2H, CH2), 7.15 (m, 2H, BINOL), 7.26 (t, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}), 7.35$ (m, 3H, BINOL), 7.45 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}), 7.87$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BINOL}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, BINOL), 8.30 (s, 1H, BINOL). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 25.8(\mathrm{CH}(\mathrm{C})$, 133.6 (C), 134.8 (C), 152.2 (C), 154.7 (C). HRMS: calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4}\right]^{-}([\mathrm{M}-\mathrm{H}])^{-}$: 345.1127; Found: 345.3541.3), $60.8\left(\mathrm{CH}_{3}\right)$, $73.4(\mathrm{CH}), 115.3$ (C), 115.7(C), 122.9 $(\mathrm{CH}), 123.5(\mathrm{CH}), 124.3(\mathrm{CH}), 124.9(\mathrm{CH}), 125.7(\mathrm{CH}), 126.0(\mathrm{CH}), 126.4(\mathrm{CH})$, 127.3 (СН), 127.8 (CH), 128.4(CH), 128.9 (C), 130.5(C), 130.8 (C), 131.3

Synthesis of Compound 13. To a solution of compound 12 ($3 \mathrm{~g}, 8.6 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ was added $\mathrm{PBr}_{3}(0.55 \mathrm{~mL}, 3.65 \mathrm{mmol})$. The white solid dissolved slowly when the mixture was stirred at room temperature for 4 h . The reaction mixture was then treated with cold water (30 mL) with vigorous stirring for 2 min . The organic layer was separated and the aqueous residue was extracted with CHCl_{3} (2 $\times 50 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried in vacuum to give the desired product as a pale yellow solid.

The compound 13 was used in the following reactions without further purification.
Yield: 3.6 g (90\%).

2. MALDI-ToF-MS spectrum of MA/CIPO copolymer

Figure S1. MALDI-ToF-MS spectrum of MA/ClPO copolymer

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of various polyesters

Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of MA/CIPO copolymer in CDCl_{3}

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of MA/GO copolymer in CDCl_{3}

Figure S4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of MA/CHO copolymer in CDCl_{3}

Figure S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of SA/CIPO copolymer in CDCl_{3}

4. ${ }^{1} \mathrm{H}$-NMR spectra of ligands L2 and L3

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of Ligand L 2 in CDCl_{3}

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of Ligand L 3 in CDCl_{3}

5. Chiral HPLC analysis

Figure S8. HPLC spectrum of (rac)-3-Phenoxy-1,2-propanediol resulted from the hydrolysis of the MA/(rac)-GO copolymer (Column: CHIRALCEL OD-H; n -Hexane/2-Propanol $\left.=90 / 10 ; \mathrm{t}_{\mathrm{R} 1}=6.565 \mathrm{~min} ; \mathrm{t}_{\mathrm{R} 2}=11.665 \mathrm{~min}\right)$.

Figure S9. HPLC spectrum of (S)-3-Phenoxy-1,2-propanediol obtained from the hydrolysis of the MA/(S)-GO copolymer (Column: CHIRALCEL OD-H; n -Hexane/2-Propanol $\left.=90 / 10 ; \mathrm{t}_{\mathrm{R} 1}=6.632 \mathrm{~min} ; \mathrm{t}_{\mathrm{R} 2}=11.832 \mathrm{~min}\right)$.

6. Kinetic study of the catalysts a and c

Figure S10. Determination of the copolymerization rate (R) as a change of the conversion with time at various catalyst loadings: (A) catalyst \mathbf{a} and (B) catalyst \mathbf{c}.

