SUPPORTING INFORMATION

Microgels or Microcapsules? Role of Morphology on the

Release Kinetics of Thermoresponsive PNIPAm-co-PEGMa

Hydrogels

Tatiya Trongsatitkul and Bridgette M. Budhlall*

Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, MA, 01854, USA.

Contents:

Calibration curve fo	r FITC-dextran's	fluorescence	intensity	(Figure S1)	S2
Cultoration culve lo		indorescence	mensity	(I Iguie DI]	04

Natural log of cumulative release %	(Figure S2)	S3
-------------------------------------	-------------	----

Figure S1. A calibration curve for FITC-dextran's fluorescence intensity as a function of its concentration shows a linear relation and is used for determining a concentration of an unknown solution.

Non-First Order Release Kinetics in Microgels

In order to determine whether the % cumulative release follows first order kinetics, log % cumulative release is plotted as a function of log time and shown in Figure S2. For first release kinetics, the rate of the process depends only on concentration of a reactant (or drug in this case). As can be seen the relationship is not linear and therefore does not follow first order kinetics for PNIPAm, PEG, and PNIPAm-*co*-PEGMa microgels at 25, 37, and 45 °C.

Figure S2. Log % cumulative release plotted as a function of log time. As can be seen, the relationship is not linear and therefore does not follow first order kinetics for PNIPAm, PEG, and PNIPAm-*co*-PEGMa microgels at 25, 37, and 45 °C.