Supporting Information

for

Direct arylation polycondensation for synthesis of

bithiophene-based alternating copolymers

Junpei Kuwabara,[†] Yuta Nohara,[†] Seong Jib Choi,[†] Yohei Fujinami,[†] Wei Lu,[†] Ken Yoshimura,[‡] Jun Oguma,[‡] Katsuhiro Suenobu,[§] Takaki Kanbara^{*,†}

[†]Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan

[‡]Tsukuba Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba 300-3294, Japan

[§]Advanced Materials Research Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba 300-3294, Japan

Entry	Concentration of monomers	Reaction time(h)	$M_{\rm n}{}^{ m b}$	$M_{ m w}/M_{ m n}^{ m b}$	Yield (%) ^c
1	0.30 M	1 h	12 900	1.91	81
2	0.15 M	0.5 h	15 200	2.10	85
3	0.075 M	1 h	11 700	2.07	83
4	0.15 M	6 h	18 100	2.35	96 ^d

Table 1. Optimization for the synthesis of **Polymer 7**^a

^a Reactions were carried out at 100 $^{\circ}$ C using Pd(OAc)₂ (2 mol%), PivOH (30 mol%) and K₂CO₃ (2.5 equiv.) in DMAc. ^b Estimated by GPC calibrated on polystyrene standards. ^c The products were obtained by reprecipitation from CHCl₃/MeOH and washing with hexane. ^d Yield after Soxhlet extraction with hexane and acetone.

Figure S-1. MALDI-TOF-MASS spectrum of **Polymer 2** (Table 1, Entry 4) using dithranol as a matrix and des-Arg¹-Bradykinin, Anglotensin I and Glu¹-Flibrinopeptide B as external standards. The calculated mass for the repeating unit is 637.4. The m/z values for peaks 1-7 and their proposed assignment are shown as follows.

Calculated mass: 3268.82082

Peak 2, Found m/z: 3410.2415

Calculated mass: 3410.94835

Peak 3, Found m/z: 3189.0254

Calculated mass: 3190.91031

Peak 4, Found m/z: 3048.4768

Calculated mass: 3048.78278

Peak 5, Found m/z: 3126.5745

Calculated mass: 3128.69124

Peak 6, Found m/z: 2992.4038

 \mathbf{Or}

Calculated mass: 2993.60880

Peak 7, Found m/z: 3489.0618

Calculated mass: 3488.85886

Figure S-2. MALDI-TOF-MASS spectrum of **Polymer 7** and proposed structures corresponding to the peaks.

Figure S-3. MALDI-TOF-MASS spectrum of **Polymer 8** and proposed structures corresponding to the peaks.

Figure S-4. Cyclic voltammograms of **Polymer 7** and **8** in CH₃CN containing Bu_4NPF_6 (0.1 M). Sweep rate = 10 mVs⁻¹.

Figure S-5. Optimized structure of the models for (a) **Polymer 7** and (b) **Polymer 8** on the basis of the DFT calculation.

Figure S-6. ¹H NMR spectrum of **Polymer 1** (Table 1, Entry 2) (400 MHz, CDCl₃).

Figure S-7. ¹H NMR spectrum of **Polymer 2** (Table 1, Entry 4) (400 MHz, CDCl₃).

Figure S-8. ¹H NMR spectrum of **Polymer 3** (Table 1, Entry 6) (400 MHz, CDCl₃).

Figure S-9. ¹H NMR spectrum of **Polymer 4** (Table 1, Entry 8) (400 MHz, CDCl₃).

Figure S-10. ¹H NMR spectrum of **Polymer 5** (Table 1, Entry 10) (400 MHz, CDCl₃).

Figure S-11. (a) ${}^{13}C{}^{1}H$ and (b) DEPT 135 spectra of **Polymer 5** (Table 1, Entry 10) (125 MHz, CDCl₃).

Figure S-12. ¹H NMR spectrum of **Polymer 6** (Table 1, Entry 12) (400 MHz, CDCl₃).

Figure S-13. ¹H NMR spectrum of **Polymer 7** (Table 1, Entry 13) (400 MHz, CDCl₃).

Figure S-14. (a) ${}^{13}C{}^{1}H$ and (b) DEPT 135 spectra of **Polymer 7** (Table 1, Entry 13) (125 MHz, CDCl₃).

Figure S-15. ¹H NMR spectrum of **Polymer 8** (Table 1, Entry 14) (400 MHz, CDCl₃).

Figure S-16. (a) ${}^{13}C{}^{1}H$ and (b) DEPT 135 spectra of **Polymer 8** (Table 1, Entry 14) (100 MHz, CDCl₃).