SUPPORTING INFORMATION

Hydrosoluble Dendritic Poly(ethylene oxide)s with Zinc Tetraphenylporphyrin Branching Points as Photosensitizers.

Anne-Laure Wirotius^{1,2}, Emmanuel Ibarboure^{1,2}, Luca Scarpantonio³, Michel Schappacher^{1,2},

*Nathan D. McClenaghan³ and Alain Deffieux^{1,2}**

¹ Univ. Bordeaux, LCPO, CNRS UMR 5629, F-33600 Pessac, France.

² CNRS, LCPO, UMR 5629, F-33600, Pessac, France.

³ Univ. Bordeaux, ISM, CNRS UMR 5255, 351 cours de la libération, F-33400 Talence,

France.

Table of figures

¹ H NMR 2a	S1
¹ H NMR 3a	S2
¹ H NMR 2b ¹ H NMR 3b Fluorescence emission spectra	S3 S4 S5-S7
Singlet oxygen phosphorescence and DABCO quenching	S8-S10
Photodegradation tests of 4 , 7 and 10	S11

Figure S1. ¹H NMR spectrum of tetraphenylporphyrin 2a in CDCl₃.

Figure S2. ¹H NMR spectrum of tetraphenylporphyrin **3a** in CDCl₃.

Figure S3. ¹H NMR spectrum of tetraphenylporphyrin **2b** in CDCl₃.

Figure S4. ¹H NMR spectrum of tetraphenylporphyrin **3b** in CDCl₃.

Figure S5. Fluorescence emission spectra of dendritic porphyrin **4** in CH_2Cl_2 (red) and water (blue), λ_{ex} = 560 nm.

Figure S6. Fluorescence emission spectra of dendritic porphyrin 7 in CH_2Cl_2 (red) and water (blue), λ_{ex} = 560 nm.

Figure S7. Fluorescence emission spectra of dendritic porphyrin **10** in CH_2Cl_2 (red) and water (blue), λ_{ex} = 560 nm.

Figure S8. Emission spectra of singlet oxygen generated by dendritic porphyrin photosensitizer **4** (3.7×10^{-5} M) in D₂O (black), in presence of ${}^{1}O_{2}$ quencher DABCO: 1eq (red) and 0.1 M (blue). Excitation at 560 nm.

Figure S9. Emission spectra of singlet oxygen generated by dendritic porphyrin photosensitizer (7) (8.7×10^{-6} M) in D₂O (black), in presence of ${}^{1}O_{2}$ quencher DABCO: 1eq (red) and 0.1M (blue). Excitation at 560 nm.

Figure S10. Emission spectra of singlet oxygen generated by dendritic porphyrin photosensitizer *(10)* (2.7×10^{-6} M) in D₂O (black), in presence of ${}^{1}O_{2}$ quencher DABCO: 1eq (red) and 0.1M (blue). Excitation at 560 nm.

Figure S11. Advancement of photodegradation of $(4 \blacksquare)$, $(7 \bullet)$ and $(10 \blacktriangle)$ in air-equilibrated D₂O on a long timescale (in seconds) upon irradiation at 532 nm. (Laser power = 3.7mW)

Table of photodegradation data corresponding to the average degradation of individual chromophores within the dendrimers based on initial mean absorptivity.

ref	Φ	half life s
4	2.8E-07	9.4E+04
7	3.3E-07	9.3E+04
10	4.1E-07	9.6E+05
Iodo-BODIPY	1.83E-05	1.82E+03