## **Supporting Information for**

## Controlled radical polymerization of a styrenic sulfonium monomer and post-polymerization modifications

Yannick P. Borguet and Nicolay V. Tsarevsky\*

Department of Chemistry

and Center for Drug Discovery, Design and Delivery at Dedman College,

Southern Methodist University

3215 Daniel Avenue, Dallas, TX 75275, USA.

\*Corresponding author: E-mail: nvt@smu.edu; Fax: +1-214-768-4089; Tel: +1-214-768-3259



**Figure S1** TGA of the monomers show an increased thermal stability of 4-VBThtBF<sub>4</sub> compared to 4-VBThtCl (scan from 40 to 700 °C at a constant heating rate of 10 °C min<sup>-1</sup> under a flow of nitrogen).



**Figure S2** SEC traces of the ICAR ATRP of  $4VBThtBF_4$  using 3 mol% of  $CuBr_2$  (resp. initiator) and a [Cu]:[TPMA] ratio of 1:2 in DMF at 70 °C. Progressive loss of control due to the permanent formation of dead polymer chains is evidenced by the increase in tailing with conversion.



**Figure S3** NMR spectra obtained before (top, DMSO- $d_6$ ) and after 2 hours (bottom, CD<sub>3</sub>CN) of reaction during the ICAR ATRP of 4VBThtBF<sub>4</sub> at 70 °C showing the presence of tetrahydrothiophene.



**Figure S4** SEC traces for the polyVBSBn polymers obtained after reaction under dilute and concentrated conditions from samples of polyVBThtBF<sub>4</sub> obtained via RAFT polymerization. *Reaction conditions:* polyVBThtBF4 (5 mg) and BnSNa (10 mg) were reacted as described in the experimental section except for the total volume of solvent (DMF) being used (0.1 mL, red curve; 1.0 mL black curve).



**Figure S5** SEC trace for the poly4VBN<sub>3</sub> obtained by reaction between poly4VBThtBF<sub>4</sub> and NaN<sub>3</sub>. Significant tailing of the curve towards the low  $M_n$  can be plausibly explained by the presence of residual charged monomer units along some polymer chain due to non-quantitative reaction with sodium azide.



Figure S6 SEC trace for the polyPh4VPhOx obtained after reaction of  $poly4VBThtBF_4$  with DBU and benzaldehyde.



**Figure S7** <sup>1</sup>H NMR spectrum of poly4VBThtBF<sub>4</sub> in CD<sub>3</sub>CN.



Figure S8 <sup>13</sup>C NMR spectrum of poly4VBThtBF<sub>4</sub> in CD<sub>3</sub>CN.



Figure S9 <sup>1</sup>H NMR spectrum of poly4VBSBn in CDCl<sub>3</sub>.



Figure S10 <sup>13</sup>C NMR spectrum of poly4VBSBn in CDCl<sub>3</sub>.



**Figure S11** <sup>1</sup>H NMR spectrum of polyPh4VPhOx in CDCl<sub>3</sub>.



Figure S12 <sup>13</sup>C NMR spectrum of polyPh4VPhOx in CDCl<sub>3</sub>.