Synthesis and Characterization of 4-Vinylimidazole ABA Triblock Copolymers Utilizing a Difunctional RAFT Chain Transfer Agent

Michael H. Allen, Jr.^{*a*}, Sean T. Hemp^{*a*}, Musan Zhang^{*a*}, Mingqiang Zhang^{*a*}, Adam E. Smith^{*b*}, Robert B. Moore^{*a*}, and Timothy E. Long^{*a*},*

Supporting Information

Triblock Copolymer	25 °C	60 °C	80 °C	100 °C
Poly(4VIM ₃₅ - <i>b</i> -DEGMEMA ₁₃₄ - <i>b</i> -4VIM ₃₅)	32,500	32,900	34,300	40,500
Poly(4VIM ₅₃ - <i>b</i> -DEGMEMA ₁₃₄ - <i>b</i> -4VIM ₅₃)	35,800	35,300	46,400	47,000
Poly(4VIM ₈₉ - <i>b</i> -DEGMEMA ₁₃₄ - <i>b</i> -4VIM ₈₉)	42,500	58,600	67,200	67,200

Figure S1. Aqueous SEC of poly(4VIM-b-DEGMEMA-b-4VIM) triblock copolymers after annealing for 24 h at various temperatures. SEC curve broadening occurred suggesting a post-polymerization reaction for extended times at elevated temperatures.

Figure S2. In situ FTIR of DEGMEMA in imidazole at 100 °C to probe possible reactions occurring during annealing of triblock copolymer films. Imidazole catalyzed the hydrolysis of DEGMEMA (1718 cm⁻¹) into an amide bond (1733 cm⁻¹) and di(ethylene glycol) methyl ether as evidenced in the *in situ* FTIR plots. The proposed mechanism is shown above.

Polymer	M _n g/mol	M _w g/mol	PDI
Poly(DEGMEMA) macroCTA	53,700	54,700	1.02
After 24 h in 1 M NaOH solution	25,000	25,700	1.03

Figure S3. Base stability study of poly(DEGMEMA) macroCTA synthesized with dCEP-OH to cleave the ester groups present in dCEP-OH. dCEP-NH2 shows no hydrolysis of amide groups.

Figure S4. ¹H NMR spectroscopy of the DEGMEMA macroCTA and the various 4VIM-containing triblock copolymers in CD₃OD.

Figure S5. Water sorption analysis of poly(1VIM) and poly(4VIM) at various relative humidities.

Figure S6. a) ¹H NMR and b) ¹³C NMR of dCEP-NH₂ in d_6 -DMSO.

a)

Figure S7. a) ¹H NMR and b) ¹³C NMR of dCEP-OH in d_6 -DMSO.

RAFT Polymerization of Additional Methacrylic Monomers with dCEP. In a representative polymerization, methyl methacrylate (1.00 g, 9.99 mmol), dCEP (15.2 mg, 25.0 μ mol = 50.0 μ mol TTC), V-501 (7.00 mg, 25.0 μ mol, and DMF (18.85 g, 258 mmol) were added to a 50-mL, round-bottomed flask equipped with stir bar. The reaction was sparged with argon for 15 min and immersed in a thermostated oil bath at 70 °C for 6 h. Absolute molecular weights were determined with SEC using 0.05M LiBr-DMF as the mobile phase.

RAFT Polymerization of Styrene with dCEP. Styrene (3.00 g, 28.8 mmol) and dCEP (9.8 mg, 16.1 μ mol = 32.2 μ mol TTC) were added to a 10-mL, round-bottomed flask equipped with stir bar and sparged with argon for 5 min. The reaction was immersed in a thermostated oil bath at 140 °C for 1 h. Absolute molecular weights were determined with SEC using 0.05 M LiBr-DMF as the mobile phase.**RAFT Polymerization of Acrylic Monomers with dCEP.** In a representative polymerization, *n*BA (1.00 g, 7.80 mmol), dCEP (11.8 mg, 19.5 μ mol = 39.0 μ mol TTC), V-501 (2.19 mg, 7.80 μ mol), and DMF (113 mg, 1.55 μ mol) were added to a 10-mL, round-bottomed flask equipped with stir bar. The reaction was sparged with argon for 15 min and immersed in a thermostated oil bath at 70 °C for 1 h. Absolute molecular weights were determined with SEC using 0.05 M LiBr-DMF as the mobile phase.

RAFT Polymerization. In a representative RAFT polymerization, EG₉MEMA (4.00 g, 8.25 mmol), dCEP (100 mg, 165 μ mol = 330 μ mol TTC), V-501 (18.5 mg, 66.0 μ mol), and DMSO (36.3 g, 465 mmol) were added to a 50-mL, round-bottomed flask equipped with a stir bar. The reaction was sparged with argon for 30 min at room temperature. The reaction was subsequently placed in a thermostated oil bath at 70 °C for 250 min. The resulting polymer was dialyzed (MWCO = 3500 g/mol) for 3 days against dI water while changing the water every 24 h. The solution was lyophilized for 48 h to obtain a pure, yellow oil. Aqueous SEC determined an

absolute $M_n = 22,900$ g/mol, PDI = 1.02. RAFT polymerization with CEP (86.9 mg, 330 µmol = 330 µmol TTC) under the same conditions ([EG₉MEMA]/[TTC]/[V-501] ratio = 125/5/1) produced poly(EG₉MEMA) with an $M_n = 12,000$ g/mol, PDI = 1.01.

Microscopy. A veeco multimode running in tapping mode with a 42 nN spring constant tip at a set point ratio of 0.82 on microtomed surfaces where the block was mounted with epoxy onto an AFM sample holder magnetic disc. Cryo ultramicrotomy was performed on a RMC Products Powertome PC ultramicrotome equipped with a CRX cryo attachment using a Diaotome MT12610 diamond blade. TEM was performed on a JEOL-JEM 1400 operated at 80 kV accelerating voltage.