Electronic Supplementary Information

Donor-Acceptor Conjugated Polymers of Arylene Vinylene with Pendent

Phenanthro[9,10-d]imidazole for High-Performance

Flexible Resistor-type Memory Applications

Hung-Chin Wu,¹ Cheng-Liang Liu,² and Wen-Chang Chen^{1,*}

¹Department of Chemical Engineering, National Taiwan University,

Taipei 10617, Taiwan

²Department of Chemical and Materials Engineering, National Central University,

Taoyuan 32001, Taiwan

* To whom all correspondence should be addressed.

E-mail:chenwc@ntu.edu.tw

Fig. S1. ¹H NMR Spectra of (a) **PVT-PI** and (b) **PVTPA-PI** in CD_2Cl_2 . (x: CD_2Cl_2 , y: H_2O).

Fig. S2. (a) TGA and (b) DSC curves of the studied polymers at a heating rate of 10 °C min⁻¹ under a nitrogen atmosphere.

Fig. S3. Optimized backbone geometry of dimers of (a) **PVC-PI**, (b) **PVT-PI**, and (c) **PVTPA-PI**. The side chains were replaced with the methyl groups to simplify the calculation.

Fig. S4. PL spectra of vinylene-based D-A polymers in thin film state.

PVTPA-PI (48.9 nm) that were exhibited from the scanning profiles of Microfigure Measuring Instrument.

Fig. S6. Variation of current density and threshold voltage with different bending radii of the flexible **PVTPA-PI** devices.

Fig. S7. Mechanical endurance of the of the flexible PVTPA-PI devices.