Electronic Supplementary Information

for

A Facile and Highly Efficient Strategy for Esterification of Poly (Meth) Acrylic Acid with halogenated compounds at Room Temperature Promoted by 1, 1, 3, 3-Tetramethylguanidine

Qianbiao Li,^{*a*} Yinyin Bao,^{*b*} Hu Wang,^{*a*} Fanfan Du,^{*a*} Qing Li,^{*a*} Bangkun Jin ^{*a*}* and

Ruke Bai^a*

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and

Engineering, University of Science and Technology of China, Hefei, 230026,

People's Republic of China.

bairk@ustc.edu.cn

Fig. S1 Esterification of PMAA with methyl iodide in DMSO at room temperature (a) at [PMAA] = 0.5 unit mol / L and (b) [PMAA] = 0.25 unit mol / L.

Fig. S2 Kinetics of the reaction of PMAA (0.5 unit mmol) with propargyl bromide (0.75 mmol) in DMSO (1 ml) and water (1ml) mixed solvent at room temperature using TMG (0.5 mmol) as promoter versus reaction time. Where c_{hc} and c_{acid} are the concentrations of halogenated compound and carboxyl groups before reaction. x stands for the consumption of halogenated compound at the time of t. It can be seen that a plot of $(1/(c_{hc} - c_{acid})) \ln ((c_{hc} - x)/(c_{acid} - x)) vs.$ reaction time shows a straight line with slope k, which suggests that the TMG promoted esterification of PMAA with halogenated compounds at room temperature is a S_N2 reaction, if dealing with one carboxyl group as one molecule.

Fig. S3 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (methyl methacrylate) (PMMA)

Fig. S4 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (ethyl methacrylate) (PEMA)

Fig. S5 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (propargyl methacrylate) (PPMA)

Fig. S6 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (n-butyl methacrylate) (PnBMA)

Fig. S7 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (n-octyl methacrylate) (PnOMA)

Fig. S8 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (2-ethoxy-2-oxoethyl methacrylate) (PEOOEMA)

Fig. S9 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (benzyl methacrylate) (PBMA)

Fig. S10 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (1-phenylethyl methacrylate) (PPEMA)

Fig. S11 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (2-methylallyl methacrylate) (PMAMA)

Fig. S12 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (methyl acrylate) (PMA)

Fig. S13 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (ethyl acrylate) (PEA)

Fig. S14 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (propargyl acrylate) (PPA)

Fig. S15 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (n-butyl acrylate) (PnBA)

Fig. S16 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (benzyl acrylate) (PBA)

Fig. S17 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (1-phenylethyl acrylate) (PPEA)

Fig. S18¹H NMR spectrum (CDCl₃, 400 MHz) of poly (n-octyl acrylate) (PnOA)

Fig. S19 ¹H NMR spectrum (CDCl₃, 400 MHz) of poly (2-ethoxy-2-oxoethyl acrylate) (PEOOEA)

Fig. S20 ¹H NMR spectrum (CDCl₃, 400 MHz) of macromonomers obtained by esterification of bromine end-functionalized PnBA with methacrylic acid using TMG as a promoter in THF at room temperature.

Fig. S21 ¹H NMR spectrum (CDCl₃, 400 MHz) of macromonomers obtained by esterification of bromine end-functionalized PMA with methacrylic acid using TMG as a promoter in THF at room temperature.

Fig. S22 ¹H NMR spectrum (CDCl₃, 400 MHz) of macromonomers obtained by esterification of bromine end-functionalized PS with methacrylic acid using TMG as a promoter in THF at room temperature.