Electronic Supplementary Information for

π -Congested Poly(*para*phenylene) from 2,2',6,6'-Tetraphenyl-1,1'-biphenyl: Synthesis and Structural Characterization

Florian Schlütter, Tomohiko Nishiuchi,* Volker Enkelmann, and Klaus Müllen*

Max-Planck-Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany

Email: muellen@mpip-mainz.mpg.de, nishiuch@mpip-mainz.mpg.de

Complete Reference 38

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, J. A.; , T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision D.02*, Gaussian, Inc.: Wallingford CT, 2004.

General Information

The compounds used were purchased from Sigma–Aldrich, Fluka, Fisher Scientific, VWR and Acros. Field desorption mass spectra were obtained on a VG Instruments ZAB 2-SE-FPD spectrometer, with data collected between m/z 110 - 3,300. MALDI-TOF spectrometry was conducted on a Bruker Reflex IITOF spectrometer, utilizing a 337 nm nitrogen laser. Solution UV-vis absorption and emission spectra were recorded at room temperature on a Perkin-Elmer Lambda 100 spectrophotometer and J&M TIDAS spectrofluorometer, respectively. Absolute photoluminescence quantum yields (PLQY) were evaluated at 298 K on a Hamamatsu Photonic Multi-Channel Analyzer C 10027. For these techniques 10⁻⁶ M solution in dichloromethane were used. Size-exclusion chromatography (SEC) analysis was performed with SDV (PSS) columns (106, 104, and 500 Å porosity) connected to RI and UV (254 nm) detectors against polystyrene standards, and calibrated for 1,4-poly(paraphenylene) (PPP) with THF as an eluting solvent. The high resolution mass spectrometry was performed on an ESI-Q-TOF system (maXis, BrukerDaltonics, Germany). The instrument was operated in wide pass quadrupole mode, for MS experiments, with the TOF data being collected between m/z 100 – 5,000. X-ray measurements were carried out at 120 K with Mo K α radiation (λ = 0.71073) on a Nonius KCCD diffractometer. The structure was solved by direct methods and refined on F by full-matrix least-squares cycles. Elemental analysis of solid samples was carried out on a Foss Heraeus Vario EL.

NMR measurements were recorded on a Bruker AVANCE 300, Bruker AVANCE 500 and Bruker AVANCE 700 system. For a ¹H NMR spectrum (5 mm BBI z-gradient probe) 128 transients were used with an 9,3 µs long 90° pulse and a 12600 Hz spectral width together with a recycling delay of 5 s. The temperature was kept at 298.3 K and regulated by a standard ¹H methanol NMR sample using the topspin 3.0 software (Bruker). The proton and carbon spectra were measured in CD_2Cl_2 and THF-d₈ at 298.3K and the spectra were referenced as follows: for the residual CHDCl₂ at $\delta(^{1}H) = 5.32$ ppm, THF-d₇H at $\delta(^{1}H) = 3.58$ ppm and THF-d₈ at $\delta(^{13}C)$ at 64.97 ppm (quintet). The assignment was accomplished by ¹H,¹H COSY (correlated spectroscopy) 2D method. The spectroscopic widths of the homonuclear 2D COSY experiments were typically 14000 Hz in both dimension (f1 and f2) and the relaxation delay 1.2s.

Synthetic procedures

2'-iodo-1,1':3',1"-terphenyl 2 ($\mathbf{R}^1 = \mathbf{H}$) was synthesized according to literature.¹⁻³

Concept (A)

Yamamoto dimerization of $2a (R^1 = H)$

Bis(1,5-cycloocatdiene)nickel(0) (255 mg, 0.93 mmol), 1,5-cyclooctadiene (100 mg, 0.11 mL, 0.93 mmol) and 2,2^c-bipyridine (145 mg, 0.93 mmol) were added to a flame-dried 100 mL Schlenk flask, dissolved in 10 mL anhydrous *N*,*N*-dimethylformamide and stirred for 30 min at 65 °C in the absence of light. A solution of **2a** (300 mg, 0.84 mmol) in 20 mL anhydrous toluene at 65 °C was added *via* a double-tipped needle and the resulting mixture was stirred overnight at 85 °C. The reaction was quenched by adding 1N aqueous hydrochloric acid, extracted three times with CH_2Cl_2 and the organic phase was dried with MgSO₄. After having removed the solvents *in vacuo*, the residue was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 3:1 to 2:1). **II** was obtained as a white solid (41 mg, 21%). Crystals suitable for X-ray analysis were grown by slow evaporation of a toluene solution of **II**.

¹H NMR (CD₂Cl₂, 250 MHz, δ): 6.45 – 7.65 (m, 26H). ¹³C NMR (CD₂Cl₂, 63 MHz, δ): 125.1, 126.0, 126.5, 127.4, 127.9, 128.4, 128.9, 130.1, 130.3, 132.1, 132.3. FD-MS (8kV): m/z = 458.7 (100%, M⁺). ESI-HR MS calcd for C₃₆H₂₆ ([M+Na]⁺) 481.1923, found 481.1931.

Figure 1 Different views of the X-ray crystallographic structure of II.⁴

Yamamoto dimerization of 2b ($\mathbf{R}^1 = \mathbf{CH}_3$)

5'-Methyl-[1,1':3',1"-terphenyl]-2'-amine

A 250 mL Schlenk tube was equipped with 2,6-dibromo-4-methylaniline (1.5 g, 5.66 mmol) and phenylboronic acid (2.07 g, 16.98 mmol) followed by three times evacuating and backfilling with argon. After the addition of 100 mL toluene, solid K₂CO₃ (7.82 g, 56.62 mmol) and three drops of aliquat 336 the resulting mixture was degassed with argon for one hour. To this mixture Pd(PPh₃)₄ (262 mg, 4 mol%) was added and it was stirred under an atmosphere of argon at 100 °C overnight. The addition of water, washing the aqueous phase three times with toluene, drying the combined organic phases with MgSO₄ and evaporating of the solvent *in vacuo* resulted in a crude mixture which was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 1:2). 5'-Methyl-[1,1':3',1"-terphenyl]-2'-amine was obtained as colorless oil (1.37 g, 93%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 2.41 (s, 3H), 7.05 (s, 2H), 7.40 – 7.65 (m, 10H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 20.6, 127.6, 128.4, 129.2, 129.7, 130.8, 138.8, 140.5. FD-MS (8kV): m/z = 259.3 (100%, M⁺).

2'-Iodo-5'-methyl-1,1':3',1"-terphenyl 2b

A solution of 5'-Methyl-[1,1':3',1"-terphenyl]-2'-amine (1.37 g, 5.27 mmol) in acetic acid (6.5 mL) was added dropwise to a suspension of solid NaNO₂ (382 mg, 5.54 mmol) was suspended in conc. sulfuric acid (4.5 mL) at 0 °C. After vigorously stirring for one hour at 0 °C, the diazonium salt was added to a solution of KI (920 mg, 5.54 mmol) in H₂O (12 mL) at 50 °C and stirred at 70 °C for one hour. The reaction was quenched by the addition of water and the mixture was extracted with CH_2Cl_2 (3x). The combined organic phase was dried with MgSO₄, filtered and the solvents were evaporated *in vacuo*. **2b** was obtained after column chromatographic separation (silica, *n*-hexane/CH₂Cl₂ 1:1 to 4:1) as a colorless oil (1.04 g, 53%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 2.21 (s, 3H), 7.00 (s, 2H), 7.20 – 7.32 (m, 10H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 21.0, 127.9, 128.3, 129.9, 131.5, 137.4, 142.6, 143.9. FD-MS (8kV): $m/z = 370.4 (100\%, M^+)$. ESI-HR MS calcd for C₁₉H₁₅I ([M+H]⁺) 371.0297, found 371.0301.

Dimerization

Bis(1,5-cycloocatdiene)nickel(0) (183 mg, 0.67 mmol), 1,5-cyclooctadiene (72 mg, 0.08 mL, 0.67 mmol) and 2,2^c-bipyridine (104 mg, 0.67 mmol) were added to a flame-dried 50 mL Schlenk flask, dissolved in 7.2 mL anhydrous *N*,*N*-dimethylformamide and stirred for 30 min at 65 °C in the absence of light. A solution of **2b** (225 mg, 0.61 mmol) in 14.4 mL anhydrous toluene at 65 °C was added *via* a double-tipped needle and the resulting mixture was stirred overnight at 85 °C. The reaction was quenched by adding 1N aqueous hydrochloric acid, extracted three times with CH_2Cl_2 and the organic phase was dried with MgSO₄. After having removed the solvents *in vacuo*, the residue was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 3:1) and dehalogenated starting material (5'-methyl-1,1':3',1"-terphenyl) was obtained.

FD-MS (8kV): m/z = 244.1 (100%, M⁺).

Scheme 1 Plausible reaction mechanism of the Yamamoto dimerization of 2a and 2b.

In situation A, a migration of the active Ni⁰ complex to the less hindered π -face of **2a** occurs, followed by the C-C bond formation at the 4'-position of **2a**. Whereas in case of **2b** (B), the migration of the active Ni⁰ complex does not result in a less hindered situation since both positions (indicated by arrows) are considerably shielded for the C-C bond formation, which results finally in dehalogenation of **2b**.

Suzuki-Miyaura dimerization of 3a ($R^1 = H, R^2 = H$)

2-([1,1':3',1"-Terphenyl]-2'-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **3a**

2'-Iodo-1,1':3',1"-terphenyl **2a** (1 g, 2.81 mmol) was added to a flame-dried 50 mL Schlenk flask and dissolved in 12.5 mL anhydrous Et₂O under an argon atmosphere. To the resulting solution was added dropwise *n*BuLi (2.11 mL, 3.37 mmol, 1.6 M in hexane) at room temperature and stirred for additional two hours. The solution was subsequently cooled to -78 °C and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.04 g, 1.15 mL, 5.61 mmol) was added with a syringe. After warming up to room temperature overnight, the reaction mixture was quenched with 1N aqueous hydrochloric acid, extracted with CH_2Cl_2 (3x), the combined organic phases were dried with MgSO₄ and filtered. The solvents were evaporated *in vacuo* and the residue was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 1:1 to 1:2) yielding **3a** as a white crystalline solid (900 mg, 91%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 0.76 (s, 12H), 7.18 – 7.40 (m, 13H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 25.1, 84.1, 127.5, 127.8, 127.9, 128.4, 128.9, 129.6, 130.0, 143.8, 146.8. FD-MS (8kV): m/z = 355.1 (100%, M⁺). ESI-HR MS calcd for C₂₄H₂₅BO₂ ([M+H]⁺) 357.2026, found 357.2035.

Dimerization

Entry	Catalyst System	<i>T</i> (°C)	t (h)	Base	Yield (%) ^[a]
1	$[Pd_2dba_3] + S-Phos$	100	24	K ₃ PO ₄	_[b]
2	$[Pd(OAc)_2] + PPh_3$	100	24	K ₃ PO ₄	_[b]
3	$[Pd(PPh_3)_4]$	100	24	K_3PO_4	_[b]
4	$[Pd(PPh_3)_4]$	100	24	Cs_2CO_3	_[b]
5	[Pd(PPh ₃) ₄] + aliquat 336	100	24	Na ₂ CO ₃	[b], [c]
6	[Pd(PPh ₃) ₄] + aliquat 336	100	24	K ₂ CO ₃	20

Table 1 Optimization of the reaction conditions for the sterically hindered Suzuki-Miyaura coupling towards III.

^[a]Yield of the isolated, analytically pure compound. ^[b]No product was detected. ^[c] Na₂CO₃ was used as a 2M aqueous solution.

A 100 mL Schlenk tube was equipped with 2-([1,1':3',1"-terphenyl]-2'-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **3a** (300 mg, 0.84 mmol) and 2'-iodo-1,1':3',1"-terphenyl **2a** (300 mg, 0.84 mmol) followed by three times evacuating and backfilling with argon. After the addition of 30 mL toluene, aqueous 2M K₂CO₃ solution (15 mL) and three drops of aliquat 336 the resulting mixture was degassed with argon for one hour. To this mixture Pd(PPh₃)₄ (39 mg, 4 mol%) was added and it was stirred under an atmosphere of argon at 100 °C overnight. After the addition of water, washing the aqueous phase three times with toluene, drying the combined organic phases with MgSO₄ and evaporating of the solvent *in vacuo*, the crude mixture was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂1:1). 1,1':3',1":2",1"'':3'''',1"'''-sexiphenyl **IIIa** was obtained as a white solid (39 mg, 20%). ¹H NMR (CD₂Cl₂, 250 MHz, δ): 6.48 – 7.59 (m, 26H). ¹³C NMR (CD₂Cl₂, 63 MHz, δ): 125.1, 126.0, 126.5, 127.4, 127.9, 128.4, 128.9, 130.1, 130.3, 132.1, 132.3. FD-MS (8kV): *m/z* = 458.3 (100%, M⁺). ESI-HR MS calcd for C₃₆H₂₆ ([M+H]⁺) 459.2113, found 459.2121.

Suzuki-Miyaura dimerization of 3b ($R^1 = Cl, R^2 = Cl$)

5'-Chloro-[1,1':3',1"-terphenyl]-2'-amine

A 250 mL Schlenk tube was equipped with 2,6-dibromo-4-chloroaniline (6.0 g, 21.03 mmol) and phenylboronic acid (6.41 g, 52.56 mmol) followed by three times evacuating and backfilling with argon. After the addition of 150 mL toluene, solid K_2CO_3 (43.6 g, 315.39 mmol) and three drops of aliquat 336 the resulting mixture was degassed with argon for one hour. To this mixture Pd(PPh₃)₄ (729 mg, 3 mol%) was added and it was stirred under an atmosphere of argon at 100 °C overnight. The addition of water, washing the aqueous phase three times with toluene, drying the combined organic phases with MgSO₄ and

evaporating of the solvent *in vacuo* resulted in a crude mixture which was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 2:). 5'-chloro-[1,1':3',1"-terphenyl]-2'-amine was obtained as colorless oil (5.55 g, 94%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 6.98 (s, 2H), 7.23 – 7.41 (m, 10H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 122.7, 128.1, 129.4, 129.5, 129.6, 139.0, 140.2. FD-MS (8kV): m/z = 278.1 (100%, M⁺).

5'-Chloro-2'-iodo-1,1':3',1"-terphenyl 2c

To a suspension of 5'-chloro-[1,1':3',1"-terphenyl]-2'-amine (5.55 g, 19.84 mmol) in concentrated hydrochloric acid (15 mL) was added dropwise to a solution of NaNO₂ (1.49 g, 21.62 mmol) in H₂O (6.6 mL) at 0 °C. After vigorously stirring for 1.5 hours at 0 °C, the diazonium salt was added to a solution of KI (27.43 g, 165.25 mmol) in H₂O (37.5 mL) and stirred at room temperature overnight. The reaction was quenched by the addition of aqueous Na₂SO₃ solution and the mixture was extracted with CH₂Cl₂ (3x). The combined organic phase was dried with MgSO₄, filtered and the solvents were evaporated *in vacuo*. The residue was recrystallized from EtOH, yielding **2c** as a colorless oil (4.50 g, 58%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 7.34 (s, 2H), 7.37 – 7.56 (m, 10H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 100.4, 101.5, 128.4, 128.5, 128.8, 129.6, 144.5, 149.9. FD-MS (8kV): m/z = 389.3 (100%, M⁺). ESI-HR MS calcd for C₁₈H₁₂ClI ([M+H]⁺) 390.9750, found 390.9763.

2-(5'-Chloro-[1,1':3',1''-terphenyl]-2'-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **3b**

5'-Chloro-2'-iodo-1,1':3',1"-terphenyl **2c** (1 g, 2.56 mmol) was added to a flame-dried 50 mL Schlenk flask and dissolved in 12.5 mL anhydrous Et₂O under an argon atmosphere. To the resulting solution was added dropwise *n*BuLi (1.92 mL, 3.07 mmol, 1.6 M in hexane) at room temperature and stirred for additional two hours. The solution was subsequently cooled to - 78 °C and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (947 mg, 1.05 mL, 5.11 mmol) was added with a syringe. After warming up to room temperature overnight, the reaction mixture was quenched with 1N aqueous hydrochloric acid, extracted with CH₂Cl₂ (3x), the combined organic phases were dried with MgSO₄ and filtered. The solvents were evaporated *in vacuo* and the residue was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 1:1 to 1:2) yielding **3b** as a white crystalline solid (910 mg, 91%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 0.75 (s, 12H), 7.17 – 7.42 (m, 12H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 25.3, 84.1, 127.7, 127.9, 128.0, 128.4, 128.9, 129.6, 130.0, 143.8, 146.8. FD-MS

(8kV): m/z = 389.9 (100%, M⁺). ESI-HR MS calcd for C₂₄H₂₅BClO₂ ([M+H]⁺) 391.1636, found 391.1655.

Dimerization

A 100 mL Schlenk tube was equipped with 2-(5'-Chloro-[1,1':3',1"-terphenyl]-2'-yl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane **3b** (300 mg, 0.77 mmol) and 5'-Chloro-2'-iodo-1,1':3',1"terphenyl **2c** (300 mg, 0.77 mmol) followed by three times evacuating and backfilling with argon. After the addition of 30 mL toluene, aqueous 2M K₂CO₃ solution (15 mL) and three drops of aliquat 336 the resulting mixture was degassed with argon for one hour. To this mixture Pd(PPh₃)₄ (35 mg, 4 mol%) was added and it was stirred under an atmosphere of argon at 100 °C for two days. After the addition of water, washing the aqueous phase three times with toluene, drying the combined organic phases with MgSO₄ and evaporating of the solvent *in vacuo*, the crude mixture was subjected to column chromatography (silica, *n*hexane/CH₂Cl₂ 4:1). 5',5""-dichloro-1,1':3',1":2",1"":3"",1""-sexiphenyl **IIIb** was obtained as a white solid (42 mg, 21%). Crystals suitable for X-ray analysis were grown by slow evaporation of a CH₂Cl₂/MeOH solution of **IIIb**.

¹H NMR (CD₂Cl₂, 250 MHz, δ): 5.91 (d, J = 7.5 Hz, 2H), 6.30 (d, J = 10 Hz, 2H), 6.53 (s, 4H) 6.67 – 7.47 (m, 16H). ¹³C NMR (CD₂Cl₂, 63 MHz, δ): 125.3, 126.2, 126.6, 127.4, 127.9, 128.4, 128.9, 130.3, 130.5, 142.1, 142.3. FD-MS (8kV): m/z = 525.1 (100%, M⁺). ESI-HR MS calcd for C₃₆H₂₄Cl₂ ([M+H]⁺) 527.1333, found 527.1322.

Figure 2 Different views of the X-ray crystallographic structure of IIIb.⁵

Scheme 2 Proposed catalytic cycle for the *Suzuki-Miyaura* cross-coupling towards **III**. A) oxidative addition and reaction with the base; B) C-H activation during transmetallation; C) reductive elimination.

Concept (B)

Attachment of peripheral phenyl rings towards 1a

1,3-Dibromo-2-iodo-5-methylbenzene

To a suspension of 2,6-dibromo-4-methylaniline (6.00 g, 22.65 mmol) in concentrated hydrochloric acid (15 mL) was added dropwise a solution of NaNO₂ (1.72 g, 24.91 mmol) in H₂O (7.8 mL) at 0 °C. After vigorously stirring for 2 hours at 0 °C, the diazonium salt was added to a solution of KI (31.32 g, 188.64 mmol) in H₂O (44 mL) and stirred at room temperature overnight. The reaction was quenched by the addition of aqueous Na₂SO₃ solution and the mixture was extracted with

 CH_2Cl_2 (3x). The combined organic phase was dried with MgSO₄, filtered and the solvents were evaporated *in vacuo*. The residue was recrystallized from EtOH, yielding 1,3-Dibromo-2-iodo-5-methylbenzene as a white solid (7.23 g, 85%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 2.30 (s, 3h), 7.47 (s, 2H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 21.4, 107.6, 131.4, 131.8, 135.8. FD-MS (8kV): m/z = 375.6 (100%, M⁺).

2,2',6,6'-Tetrabromo-4,4'-dimethyl-1,1'-biphenyl 4a

1,3-Dibromo-2-iodo-5-methylbenzene (4.2 g, 11.18 mmol) and anhydrous $CuCl_2$ (9.0 g, 67.05 mmol) was added to a flame-dried 100 mL Schlenk flask and suspended in 37 mL anhydrous Et₂O under an argon atmosphere. The resulting mixture was cooled to -78 °C and *n*BuLi (7.54 mL, 12.07 mmol, 1.6 M in hexane) was added dropwise over 2.5 hours. After warming up to room temperature overnight, the reaction mixture was quenched with aqueous NH₄Cl solution, extracted with CH₂Cl₂ (3x), the combined organic phases were dried with MgSO₄ and filtered. The solvents were evaporated *in vacuo* and the residue was subjected to column chromatography (silica, *n*-hexane) yielding **4a** as a white crystalline solid (1.53 g, 55%). Cr

¹H NMR (CD₂Cl₂, 250 MHz, δ): 2.43 (s, 6H), 7.55 (s, 4H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 20.9, 124.4, 132.8, 142.2, 153.6. FD-MS (8kV): m/z = 498.1 (100%, M⁺). Anal. Calcd. for C₁₄H₁₀Br₄: C 33.78%, H 2.02%. Found: C 33.51%, H 1.95%.

4,4'-Dimethyl-2,2',6,6'-tetraphenyl-1,1'-biphenyl 1a

I I I I I I I I I I I I I I I I I I I		,			8
Entry	Catalyst System	<i>T</i> (°C)	t (h)	Base	Yield (%) ^[a]
1	$[Pd_2dba_3] + S-Phos$	100	24	K ₃ PO ₄	20 ^[b]
2	$[Pd(OAc)_2] + PPh_3$	100	24	K_3PO_4	_[c]
3	$[Pd(PPh_3)_4]$	100	24	K_3PO_4	12
4	$[Pd(PPh_3)_4]$	100	24	Cs_2CO_3	23
5	$[Pd(PPh_3)_4] + aliquat 336$	100	24	Na ₂ CO ₃	33 ^[d]
6	[Pd(PPh ₃) ₄] + aliquat 336	100	24	K ₂ CO ₃	47

 Table 2 Optimization of the reaction conditions for the sterically hindered Suzuki-Miyaura coupling towards 1a.

^[a]Yield of the isolated, analytically pure compound. ^[b]The purification was complicated by a large amount of dehalogenated **4a**. ^[c]No product was detected. ^[d]Na₂CO₃ was used as a 2M aqueous solution.

A 50 mL Schlenk tube was equipped with 2,2',6,6'-tetrabromo-4,4'-dimethyl-1,1'-biphenyl **4a** (150 mg, 0.30 mmol) and phenylboronic acid **5a** (220 mg, 1.81 mmol) followed by three times evacuating and backfilling with argon. After the addition of 30 mL toluene, solid K_2CO_3

(1.67 g, 12.05 mmol) and three drops of aliquat 336 the resulting mixture was degassed with argon for 1.5 hours. To this mixture Pd(PPh₃)₄ (35 mg, 2.5 mol%) was added and it was stirred under an atmosphere of argon at 100 °C for two days. After the addition of water, washing the aqueous phase three times with toluene, drying the combined organic phases with MgSO₄ and evaporating of the solvent *in vacuo*, the crude mixture was subjected to column chromatography (silica, *n*-hexane/CH₂Cl₂ 4:1). Finally the product fraction was recrystallized from *n*-hexane, yielding **1a** as a white, crystalline solid (69 mg, 47%). Crystals suitable for X-ray analysis were grown by slow evaporation of a CH₂Cl₂/MeOH solution of **1a**.

¹H NMR (CD₂Cl₂, 500 MHz, δ): 2.38 (s, 6H), 6.63 (d, J = 10 Hz, 8H), 6.99 (m, 12H), 7.11 (t, $J_1 = J_2 = 5$ Hz, 4H). ¹³C NMR (CDCl₃, 176 MHz, 323 K, δ): 21.1, 125.6, 127.1, 129.2, 130.6, 132.9, 137.0, 141.7, 142.0. FD-MS (8kV): m/z = 486.7 (100%, M⁺). Anal. Calcd. for C₃₈H₃₀: C 93.79%, H 6.21%. Found: C 93.48%, H 5.92%.

Figure 3 Different views of the X-ray crystallographic structure of **1a**. a) Top view. b) Side view along the 4,4'-positions. c) Characteristic metrics of **1a**. d) View of the Asymmetric unit along the 4,4'-positions (all views: hydrogen atoms omitted for clarity).⁶

Attachment of peripheral phenyl rings towards 1b

1,3-Dibromo-5-chloro-2-iodobenzene

To a suspension of 2,6-dibromo-4-chloroaniline (10.00 g, 35.04 mmol) in concentrated hydrochloric acid (19 mL) was added dropwise to a solution of NaNO₂ (2.64 g, 38.20 mmol) in H₂O (12 mL) at 0 °C. After vigorously stirring for 2 hours at 0 °C, the diazonium salt was added to a solution of KI (48.46 g, 291.91 mmol) in H₂O 68 mL) and stirred at room temperature overnight. The reaction was quenched by the addition of aqueous Na₂SO₃ solution and the mixture was extracted with CH₂Cl₂ (3x). The combined organic phase was dried with MgSO₄, filtered and the solvents were evaporated *in vacuo*. The residue was recrystallized (3x) from EtOH, yielding 1,3-dibromo-5-chloro-2-iodobenzene as a off-white needles (7.64 g, 55%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 2.30 (s, 3h), 7.47 (s, 2H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 107.6, 131.4, 131.8, 135.8. FD-MS (8kV): m/z = 395.7 (100%, M⁺).

2,2',6,6'-Tetrabromo-4,4'-dichloro-1,1'-biphenyl 4b

1,3-dibromo-5-chloro-2-iodobenzene (3.5 g, 8.83 mmol) and anhydrous CuCl₂ (7.1 g, 53.00 mmol) was added to a flame-dried 100 mL Schlenk flask and suspended in 28 mL anhydrous Et₂O under an argon atmosphere. The resulting mixture was cooled to -78 °C and *n*BuLi (5.96 mL, 9.54 mmol, 1.6 M in hexane) was added dropwise over 2.5 hours. After warming up to room temperature overnight, the reaction mixture was quenched with aqueous NH₄Cl solution, extracted with CH₂Cl₂ (3x), the combined organic phases were dried with MgSO₄ and filtered. The solvents were evaporated *in vacuo* and the residue was subjected to column chromatography (silica, *n*-hexane) yielding **4b** as a white crystalline solid (1.91 g, 50%).

¹H NMR (CD₂Cl₂, 250 MHz, δ): 7.77 (s, 4H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 124.8, 132.2, 136.2 (3 out of 4 expected). FD-MS (8kV): m/z = 539.3 (100%, M⁺). Anal. Calcd. for C₁₂H₄Br₄Cl₂: C 26.76%, H 0.75%. Found: C 26.92%, H 0.88%.

4,4'-Dichloro-2,2',6,6'-tetraphenyl-1,1'-biphenyl 1b

A 50 mL Schlenk tube was equipped with 2,2',6,6'-tetrabromo-4,4'-dichloro-1,1'-biphenyl **4b** (1.0 g, 1.86 mmol) and (4-(tert-butyl)phenyl)boronic acid **5b** (1.98 g, 11.14 mmol) followed by three times evacuating and backfilling with argon. After the addition of 55 mL toluene, solid K_2CO_3 (10.26 g, 74.26 mmol) and three drops of aliquat 336 the resulting mixture was degassed with argon for 2 hours. To this mixture Pd(PPh₃)₄ (215 mg, 2.5 mol%) was added and it was stirred under an atmosphere of argon at 100 °C for four days. After the addition of water, washing the aqueous phase three times with toluene, drying the combined organic phases with MgSO₄ and evaporating of the solvent *in vacuo*, the crude mixture was subjected to column chromatography (silica, petrolether/CH₂Cl₂ 20:1). Finally the product fraction was crystallized from petrolether/CH₂Cl₂ solution, yielding **1b** as a white, crystalline solid (654 mg, 47%). Crystals suitable for X-ray analysis were grown by slow evaporation of a CH₂Cl₂ solution of **1b**.

¹H NMR (CD₂Cl₂, 250 MHz, δ): 1.23 (s, 36H), 6.38 (d, J = 10 Hz, 8H), 6.91 (d, J = 10 Hz, 8H), 7.05 (s, 4H). ¹³C NMR (CD₂Cl₂, 75 MHz, δ): 31.3, 34.6, 124.7, 128.9, 129.4, 133.7, 133.8, 137.4, 144.3, 149.9. FD-MS (8kV): m/z = 753.4 (100%, M⁺). Anal. Calcd. for C₅₂H₅₆Cl₂: C 83.06%, H 7.51%. Found: C 82.98%, H 7.13%.

Figure 4 Different views of the X-ray crystallographic structure of **1b**. a) Top view. b) Side view along the 4,4'-positions. c) View of the Asymmetric unit along the 4,4'-positions (all views: hydrogen atoms omitted for clarity).⁷

Polymerization

Bis(1,5-cycloocatdiene)nickel(0) (121 mg, 0.44 mmol), 1,5-cyclooctadiene (47 mg, 0.05 mL, 0.44 mmol) and 2,2'-bipyridine (69 mg, 0.44 mmol) were added to a flame-dried 10 mL microwave vial, dissolved in 1.6 mL anhydrous *N*,*N*-dimethylformamide, sealed and stirred

for 30 min at 65 °C in the absence of light. A solution of **1b** (150 mg, 0.20 mmol) in 2.4 mL anhydrous toluene at 65 °C was added *via* a double-tipped needle and the resulting mixture was heated in a CEM microwave at 300 W and activated cooling, keeping the temperature at 110 °C for two days. The reaction mixture was precipitated in 150 mL MeOH/conc. HCl (10:1) and stirred for 2 hours resulting in a white solid after filtration (119 mg, 79%). The polymer was separated by preparative size-exclusion chromatography (BioBeads S-X1, CHCl₃) to allow isolation of **6** (25 mg, 9%), **7** (18 mg, 5%), **8** (10 mg, 2%), **9** (11 mg, 2%), **10** (8 mg, 1%), **11** (8 mg, 1%), **12** (5 mg, 0.5%), **13** (4 mg, 0.3%) and **14** (30 mg, 2%). Analytical SEC profiles of the isolated fractions are shown in Figure 8. Compounds **6** – **9** were identified by mass spectrometry, while their NMR were complicated and broadened.

Polymer

¹H NMR (CD₂Cl₂, 300 MHz, δ): 1.29 (br s, CH₃), 6.56 (br m, CH_{peripheral}), 7.04 (br m, CH_{peripheral}), 7.48 (br s, CH_{central}), 7.50 (br s, CH_{central}). SEC (eluent: THF, poly(*para*phenylene) calibration): $M_n = 10,400$ g/mol, PDI = 1.42.

Dimer 6

¹H NMR (CD₂Cl₂, 700 MHz, *δ*): 1.34 (s, 36H), 1.35 (s, 36H), 6.57 (dd, $J_1 = 6$ Hz, $J_2 = 2.5$ Hz, 16H), 7.03 (t, $J_1 = J_2 = 7.5$ Hz 16H), 7.19 (s, 4H), 7.51 (s, 4H). ¹³C NMR (CD₂Cl₂, 63 MHz,

δ): 33.0, 33.1, 33.6, 36.0, 36.2, 115.9, 122.1, 122.5, 123.7, 123.9, 124.3, 126.6, 129.8, 130.3, 131.0, 131.1, 132.5, 132.6, 136.2. FD-MS (8kV): m/z = 1434.4 (100%, M⁺). MALDI-TOF MS (dithranol): m/z = 1435.82 (100%) [M+H]⁺. ESI-HR MS calcd for C₁₀₄H₁₁₂Cl₂ ([M+Na]⁺) 1453.8039, found 1453.7991.

Trimer 7

¹H NMR (CD₂Cl₂, 700 MHz, δ): 1.33 (s, 36H), 1.34 (s, 36H), 1.35 (s, 36H), 6.57 (dd, $J_I = 6$ Hz, $J_2 = 2.2$ Hz, 16H), 6.63 (d, J = 8 Hz, 8H), 7.03 (m, 24H), 7.19 (s, 4H), 7.53 (s, 8H). ¹³C NMR (CD₂Cl₂, 176 MHz, δ): 29.2, 29.7, 31.1, 34.2, 118.5, 124.2, 124.3, 125.0, 127.6, 128.6, 128.7, 128.8, 129.0, 130.7, 133.0, 133.9, 134.3, 134.5, 134.9, 137.3, 137.6, 138.3, 138.6, 138.8, 139.2, 142.8, 142.9, 144.0, 148.9, 149.0, 149.4, 153.7. FD-MS (8kV): m/z = 2113.4 (100%, M⁺). MALDI-TOF MS (dithranol): m/z = 2114.34 (100%) [M+H]⁺. ESI-HR MS calcd for C₁₅₆H₁₆₈Cl₂ ([M+Na]⁺) 2134.2421, found 2134.2405.

Figure 5 HOMO and LUMO orbitals of 7_{th} (a), and *p*-sexiphenyl (b). Left: molecular structures, middle: HOMO orbitals, right: LUMO orbitals (isocounter value: 0.015 [a.u.] for all molecular orbitals).

Figure 6 LUMO orbitals of $\mathbf{1}_{th}$, $\mathbf{6}_{th}$, and *p*-quaterphenyl (isocounter value: 0.010 [a.u.] for LUMO of $\mathbf{1}_{th}$, 0.026 [a.u.] for LUMO of $\mathbf{6}_{th}$ and *p*-quaterphenyl).

Figure 7 TD-DFT calculations of $\mathbf{1}_{th}$ (a), $\mathbf{6}_{th}$ (b), and $\mathbf{7}_{th}$ (c) (B3LYP/6-31G*// B3LYP/6-31G*).

Figure 8 SEC analysis of 8-14.

Figure 9 Plot of the absorption maxima (λ_{max}) of 6-14 with the number of the repeating units. The curve corresponds to the exponential fit.⁸

Figure 10 Correlation of the optical absorption energy (E_n) of unsubstituted PPP with the invers number of the repeating units and the linear equation (for all spectra: 10^{-6} M in CHCl₃).⁹

Figure 11 Correlation of the absorption maxima (λ_{max}) of unsubstituted PPP with the number of the repeating units. The curve corresponds to the exponential fit (for all spectra: 10^{-6} M in CHCl₃).^{8, 9}

Figure 12 1 H (top) and 13 C spinecho (bottom) NMR spectra of 1a.

Figure 13 1 H (top) and 13 C spinecho (bottom) NMR spectra of 1b.

Figure 14 1 H (top) and 13 C spinecho (bottom) NMR spectra of 6.

Figure 15 1 H (top) and 13 C spinecho (bottom) NMR spectra of 7.

Figure 16 ¹H NMR spectrum of the isolated polymer after *Yamamoto* coupling. Inset: Zoom into the aromatic region of the spectrum together with the structure of a polymer chain with highlighted 3,5- and 3',5'-protons and the respective assignment.

Figure 17 MALDI-TOF MS of the isolated polymer after *Yamamoto* coupling. Inset: Measured (black line) and simulated (red line) isotopic pattern of the dimer, trimer, tetramer and pentamer.

References

- S. Ozasa, Y. Fujioka, J. Kikutake and E. Ibuki, *Chem. Pharm. Bull.*, 1983, **31**, 1572-1581.
- 2. Y. Fujioka, S. Ozasa, K. Sato and E. Ibuki, *Chem. Pharm. Bull.*, 1985, 33, 22-29.
- L. Tong, H. Lau, D. M. Ho and R. A. Pascal, J. Am. Chem. Soc., 1998, 120, 6000-6006.
- 4. Crystal data for II (CCDC 918310 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.): Single crystals of II were obtained by slow evaporation of a dichloromethane solution. These have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON (A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7). C₃₆H₂₆, *M* = 458.60, triclinic, P-1, a = 9.9080(2), b = 10.7787(3), c = 12.7321(3) Å, a = 97.6691(12), b = 94.7545(14), g = 115.8972(11)°. R = 0.0482, R_w = 0.0590.
- 5. Crystal data for **IIIb** (CCDC 918311 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.): Single crystals of **IIIb** were obtained by slow evaporation of a dichloromethane/methanol solution. The unit cell contains 16 CH₃OH molecules. These have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON (A. L. Spek, J. Appl. Crystallogr. 2003, **36**, 7). C_{36.5}H₂₅Cl₃, M = 569.96, monoclinic, P21/c, a = 7.5317(7), b = 21.0519(9), c = 17.7743(8) Å, b = 94.802(5)°. R = 0.0464, R_w = 0.0571.
- 6. Crystal data for **1a** (CCDC 918312 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.): Single crystals of **1a** were obtained by slow evaporation of a dichloromethane/methanol solution. These have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON (A. L. Spek, J. Appl. Crystallogr. 2003, **36**, 7). C₃₈H₃₀, M = 486.66, monoclinic, C2/c, a = 7.3789(2), b = 22.1571(8), c = 16.3043(5) Å, $b = 102.0571(18)^{\circ}$. R = 0.0423, R_w = 0.0502.
- 7. Crystal data for **1b** (CCDC 918313 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.): Single crystals of **1b** were obtained by slow evaporation of a dichloromethane solution. These have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON (A. L. Spek, J. Appl. Crystallogr. 2003, **36**, 7). $C_{52}H_{56}Cl_2$, M = 751.92, orthorombic, Fddd, a = 13.8723(4), b = 17.3314(3), c = 37.5890(5) Å, $b = 90.0000(00)^{\circ}$. R = 0.0601, $R_w = 0.0766$.

- 8. U. Stalmach, H. Kolshorn, I. Brehm and H. Meier, *Liebigs Ann.*, 1996, 1449-1456.
- 9. A. E. Gillam and D. H. Hey, J. Chem. Soc., 1939, 1170-1177.