Hybrid Organic/Inorganic Nanomaterial Sensors for Selective Detection of Au³⁺ Using Rhodamine-Based Modified PolyacrylicAcid (PAA)-Coated FeNPs

NoiNiamsa,[†]ChatthaiKaewtong,^{*†}WeerapolSrinonmuang,[†]BanchobWanno,[†] BunchaPulpoka[‡] and ThawatchaiTuntulani[‡]

[†]Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.Fax: 66 0437 54246; Tel: 66 0437 54246; E-mail: <u>kchatthai@gmail.com</u> [‡]Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Fax: 66 0221 87598; Tel: 66 0221 87643.

Contents

Figure S1. FTIR spectrum of PAA-Rho3 and PAA-Rho4.	S 3
Figure S2. ¹ H NMR spectra of PAA-Rho2 in DMSO- d_6 in the	S 3
presence (a) and absence (b) of Au^{3+} .	
Figure S3.Color change and fluorescence changes of PAA-Rho2	S4
(0.1 g/L) in the presence of various cations.	
Figure S4. FT-IR spectra of PAA-Rho2 and PAA-Rho2 •Au ³⁺ .	S 4
Figure S5. The B3LYP/LanL2DZ level-computed molecular	S5
orbitals contoured, HOMOs (Down) and LUMOs (Up) at an iso-	
surface value of 0.05 a.u. for PAA-Rho2 and PAA-Rho2 •Au ³⁺ .	
Scheme S2. The exchange process of hybrid organic/inorganic	S5
material (PAA-Rho2-FeNPs)	
Figure S6. Fluorescent emission changes of PAA-Rho2-	S6
FeNPs $(0.1g/L)$ in the presence of different amounts of Au ³⁺ .	
Figure S7. The fluorescent intensities of PAA-Rho2-	S 6
FeNPs $(0.1g/L)$ in the presence of different amounts of Au ³⁺ at 590	
nm.	
Figure S8. H NMR spectrum of N-(rhodamine B)lactam-	S 7
ethylenediamine (Rho).	
Figure S9. ¹ H NMR spectrum of polymeric sensor (PAA-Rho1).	S 7
Figure S10. ¹ H NMR spectrum of polymeric sensor (PAA-Rho2).	S 8
Figure S11. ¹ H NMR spectrum of polymeric sensor (PAA-Rho3).	S 8
Figure S12. 'H NMR spectrum of polymeric sensor (PAA-Rho4).	S9

Figure S1. FTIR spectrum of PAA-Rho3 and PAA-Rho4.

Figure S2. ¹H NMR spectra of PAA-Rho2 in DMSO-d₆ in the presence (a) and absence (b) of Au^{3+} .

Figure S3. Color change and fluorescence changes of **PAA-Rho2** (0.1 g/L) in the presence of various cations.

Figure S4. FT-IR spectra of PAA-Rho2 and PAA-Rho2•Au³⁺.

Figure S5. The B3LYP/LanL2DZ level-computed molecular orbitals contoured, HOMOs (Down) and LUMOs (Up) at an iso-surface value of 0.05 a.u. for PAA-Rho2 and PAA-Rho2•Au³⁺.

Scheme S2. The exchange process of hybrid organic/inorganic material (PAA-Rho2-FeNPs)

Figure S6. Fluorescent emission changes of **PAA-Rho2-FeNPs** (0.1g/L) in the presence of different amounts of Au^{3+} .

Figure S7. The fluorescent intensities of **PAA-Rho2-FeNPs** (0.1g/L) in the presence of different amounts of Au^{3+} at 590 nm.

Figure S8. ¹H NMR spectrum of N-(rhodamine B)lactam-ethylenediamine (**Rho**).

Figure S9. ¹H NMR spectrum of polymeric sensor (PAA-Rho1).

Figure S11. ¹H NMR spectrum of polymeric sensor (PAA-Rho3).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

