D-Glucose-derived PET copolyesters with enhanced T_{g}

Cristina Japu,^a Antxon Martínez de Ilarduya,^a Abdelilah Alla, M^a Gracia García-Martín,^b Juan A. Galbis^b and Sebastián Muñoz-Guerra^{a*}

^aUniversitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain ^bUniversidad de Sevilla, Facultad de Farmacia, Prof. García González s/n, Sevilla, Spain

Corresponding author: sebastian.munoz@upc.edu

Figure 1. ¹H NMR spectra of 2,4:3,5-di-*O*-methylene-D-glucitol (Glux-diol).

Figure 2. ¹H NMR spectra of dimethyl 2,4:3,5-di-O-methylene-D-glucarate (Glux-diester).

Figure 3. ¹H and ¹³C NMR spectra of PE₆₄Glux₃₆T copolyester.

Figure 4. ¹H and ¹³C NMR spectra of PET₇₉Glux₂₁ copolyester.

Figure. 5. COSY ¹H-¹H and ¹H-¹³C HETCOR NMR spectra of PE₆₄Glux₃₆T copolyester.

Figure. 6. COSY ¹H-¹H and ¹H-¹³C HETCOR NMR spectra of PET₇₉Glux₂₁ copolyester.

Figure 7. T_m values as a function of the content in Glux units.

Figure 8. SEM micrographs of films of $PE_{72}Glux_{28}T$ (a), $PE_{20}Glux_{80}T$ (b) and $PET_{79}Glux_{21}$.

 Table. 1. Powder X-ray diffraction data of polyesters.

 Table 2. Mechanical parameters measured in stress-strain essays.

Figure 1. ¹H NMR spectra of 2,4:3,5-di-O-methylene-D-glucitol (Glux-diol). Bottom: The whole spectrum. Top: Enlarged region containing compound signals with assignments.

Figure 2. ¹H NMR spectra of dimethyl 2,4:3,5-di-*O*-methylene-D-glucarate (Glux-diester). Bottom: The whole spectra; Top: Enlarged region containing compound signals with assignments.

Figure 3. ¹H (top) and ¹³C (bottom) NMR spectra of $PE_{64}Glux_{36}T$ copolyester.

Figure 4. ¹H (top) and ¹³C (bottom) NMR spectra of $PET_{79}Glux_{21}$ copolyester. (* OCH_3 end group).

Figure. 5. a) COSY $^1\text{H-}^1\text{H}$ (top) and $^1\text{H-}^{13}\text{C}$ HETCOR (bottom) NMR spectra of PE_{64}Glux_{36}T copolyester.

Figure 6. COSY H-¹H (top) and ¹H-¹³C HETCOR (bottom) NMR spectra of PET₇₉Glux₂₁ copolyester.

Composition calculations

Although the signals corresponding to EG and Glux units are overlapped, the signal due to the aromatic terephthalate protons appears well resolved at lower field. Using the area of this signal and the area of the group of signals due to EG and Glux, it was possible to calculate the copolyester composition using the following simple expressions.

PExGluxyT:

Area of aromatic protons= K (4x+4y)Area of EG and Glux protons= K (4x+12y)x+y= 100

PETxGluxy :

Area of aromatic protons= K (4x) Area of EG and sugar protons= K (4x+12y) x+y=100

Figure 7. T_m values as a function of the content in Glux units.

Figure 8. SEM micrographs of films of $PE_{72}Glux_{28}T$ (a), $PE_{20}Glux_{80}T$ (b) and $PET_{79}Glux_{21}$ (c). After incubation in the presence of enzymes at pH 7.4 (a',b',c'), and after hydrolytic degradation at pH 2, 80 ° C (a'',b'',c''). c''': Control of and $PET_{79}Glux_{21}$ incubated at pH 7.4 but without enzymes added.

Table. 1. Powder X-ray diffraction data of polyesters.

	-								
Polyester				d _{hkl} ^a	(Å)				X ^b
PET	5.44 s	5.00 s	4.13 s	3.91 s	3.55 w	3.40 s	3.19 m	2.72 m	0.63
$PET_{95}Glux_5$	5.43 s	5.02 s	4.13 s	3.92 s	3.55 w	3.40 s	3.19 w	2.72 m	0.45
PET ₈₉ Glux ₁₁	5.43 s	5.03 s	4.14 s	3.92 s	-	3.40 s	3.19 w	2.72 m	0.37
PE ₉₂ Glux ₈ T	5.42 s	5.03 s	4.14 s	3.92 s	-	3.41 s	-	2.73 m	0.42
PE ₈₇ Glux ₁₃ T	542 s	5.03 s	4.15 s	3.92 s	-	3. 43 s	-	2.73 m	0.33

^aBragg spacings measured in powder diffraction patterns obtained from annealed samples. Intensities visually estimated as follows: m, medium; s, strong; w, weak. ^bCrystallinity index calculated as the quotient between crystalline area and total area. Crystalline and amorphous areas in the X-ray

diffraction pattern were quantified using PeakFit v4.12 software.

Table 2. Mechanical properties.

Copolyester	Elastic modulus (MPa)	Tensile strength (MPa)	Elongation at break (%)
PET ^a	1032±52	45±7	23±5
$PE_{79}Glux_{21}T$	1040±47	48±5	27±3
$PE_{72}Glux_{28}T$	1070±50	41±7	20±2
$PE_{64}Glux_{36}T$	1080±40	39±6	16±2

^a Data from reference 37c in the main text.