Supplementary Information

SYNTHESIS OF RANDOM COPOLYMER BASED PH-RESPONSIVE NANOPARTICLES AS DRUG CARRIERS FOR CANCER THERAPEUTICS

Apiradee Honglawan¹, Houping Ni², Drew Weissman² and Shu Yang^{1,3*}

¹Department of Chemical and Biomolecular Engineering

²Division of Infectious Disease

³Department of Materials Science and Engineering

University of Pennsylvania

3231 Walnut Street

Philadelphia, PA 19104-8296

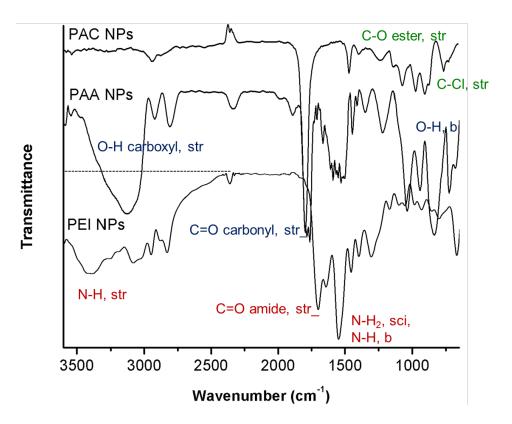


Figure S1. FT-IR spectra of different nanoparticles: PAC NPs, PAA NPs and PEI NPs.

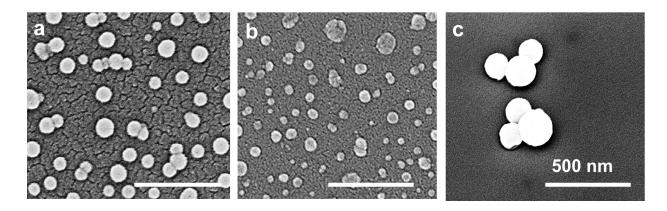
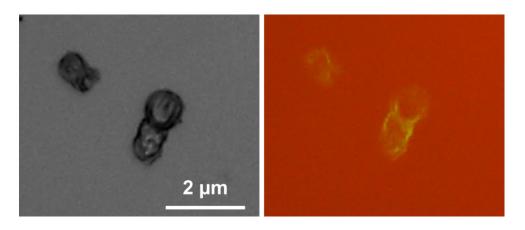




Figure S2. SEM images of particles modified at different states: PAC NPs (a), PAA NPs (b), and PEI NPs (c).

Figure S3. Optical (left) and fluorescent (right) images of FITC tagged PEI NPs drop-cast onto a clean Si-wafer at a particle concentration of ~ 1 mg/mL in aqueous solution. Large particles were synthesized at high UV dosage of 4,000 mJ/cm² prior to surface modification with FITC tagged PEI (MW 10,000) at a ratio of FITC to PEI = 3:1 (molar).

Figure 4S. Fluorescent (a) and corresponding optical (b) images of Dox/PEI NP aggregates. (c) Fluorescent image of Dox loaded PEI microparticles from ranPAC synthesized at a high UV dosage of 4,000 mJ/cm² (strategy 1). The Dox loaded particles were deposited on a Si-wafer and imaged using a Leica SP5 confocal microscope.