Supporting information

for

Macromolecular Engineering via Ring-Opening Polymerization (2): L-Lactide/Trimethylene Carbonate Copolymerization – Kinetic and Microstructural Control via Catalytic Tuning

Contents

Figure S1. Details of the low field region of the ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PLLA homopolymer synthesized from the $[(BDI)Zn{N(SiMe_3)_2}]/BnOH$ system $(M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1})$.

Figure S2. Details of the high field region of the ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PLLA homopolymer synthesized from the $[(BDI)Zn{N(SiMe_3)_2}]/BnOH$ system $(M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1})$.

Figure S3. Details of the high field region of the DEPT ¹³C NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PLLA homopolymer synthesized from the $[(BDI)Zn\{N(SiMe_3)_2\}]/BnOH$ system ($M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1}$).

Figure S4. ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PTMC homopolymer synthesized from the [(BDI)Zn{N(SiMe₃)₂}/BnOH system ($M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1}$).

Figure S5. Details of the methylene and methine region of the ¹H NMR spectrum (CDCl₃, 500 MHz, 23 °C) of a P(LLA-*grad*-TMC) gradient copolymer ($M_{n,SEC} = 13400 \text{ g.mol}^{-1}$) prepared from a simultaneous ROP with the [(BDI)Zn{N(SiMe₃)₂}]/BnOH system in toluene at 110 °C (Table 1, entry 2), with assignment of resonances.

Figure S6. Details of the methylene and methine region of the ¹H NMR spectrum (CDCl₃, 500 MHz, 23 °C) of a P(LLA-*grad*-TMC) gradient copolymer ($M_{n,SEC} = 10\ 200\ \text{g.mol}^{-1}$) prepared from a simultaneous ROP with the Al(OTf)₃/BnOH system in toluene at 110 °C (Table 1, entry 5), showing resonances (\blacktriangle) characteristic of ether units resulting from partial decarboxylation.

Figure S7. Details of the methine and methylene region of the ¹³C{¹H} NMR spectra (CDCl₃, 125 MHz, 23 °C) of P(LLA-*grad*-TMC) gradient copolymers prepared from the simultaneous ROP with the Al(OTf)₃/BnOH system in toluene at 100, 115 and 130 °C, showing evolution of resonances characteristic of ether units resulting from partial decarboxylation.

Figure S8. Details of the methine and methylene region of the ¹³C{¹H} NMR spectra (CDCl₃, 125 MHz, 23 °C) of P(LLA-*grad*-TMC) gradient copolymers prepared from the simultaneous ROP with the M(OTf)₃/BnOH systems in toluene at 110 °C, showing resonances characteristic of ether units resulting from partial decarboxylation.

Figure S9. Details of the carbonyl region of the ¹³C{¹H} NMR spectra (CDCl₃, 125 MHz, 23 °C) of (top spectra) true P(TMC-*b*-LLA) block copolymers ($M_{n,SEC} = 23\ 200$ and 2 800 g.mol⁻¹) prepared by sequentially loading of TMC (1st) and L-LA (2nd) with the

[(BDI)Zn{N(SiMe₃)₂}]/BnOH, (middle spectra) P(LLA-*grad*-TMC) gradient copolymers and (bottom spectrum) a P(LLA-*ran*-TMC) random copolymer prepared by simultaneous loading of L-LA and TMC with various catalyst/BnOH systems in toluene at 110 °C (Table 1, entries 9, 2 and 15).

Figure S10. Details of the ¹H NMR spectra (CDCl₃, 500 MHz, 23 °C) of (top spectra) true P(TMC-*b*-LLA) block copolymers prepared by sequentially loading of TMC (1st) and L-LA (2nd) with the [(BDI)Zn{N(SiMe₃)₂}] / BnOH, (middle spectrum) a P(LLA-*grad*-TMC) gradient copolymer and (bottom spectrum) a P(LLA-*ran*-TMC) random copolymer prepared by simultaneous loading of L-LA and TMC with various catalyst/BnOH systems in toluene at 110 °C (Table 1, entries 2 and 15).

Figure S11 ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a P(LLA-*ran*-TMC) random copolymer prepared by simultaneous loading of L-LA and TMC with the TBD/BnOH system in toluene at 100 °C over 1h45 (Table 1, entry 15).

Figure S12. SEC trace of a copolymer prepared from the $[(BDI)Zn\{N(SiMe_3)_2\}]/BnOH$ system ($M_{n,SEC} = 15\ 000\ \text{g.mol}^{-1}$, $D_M = 1.5$) (Table 1, entry 3).

Figure S13. SEC trace of a copolymer prepared from the Yb(OTf)₃/BnOH system ($M_{n,SEC} = 13600 \text{ g.mol}^{-1}$, $D_M = 1.3$) (Table 1, entry 9).

Figure S1. Details of the low field region of the ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PLLA homopolymer synthesized from the [(BDI)Zn{N(SiMe₃)₂}]/BnOH system ($M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1}$).

Figure S2. Details of the high field region of the ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PLLA homopolymer synthesized from the [(BDI)Zn{N(SiMe₃)₂}]/BnOH system ($M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1}$).

Figure S3. Details of the high field region of the DEPT ¹³C NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PLLA homopolymer synthesized from the [(BDI)Zn{N(SiMe₃)₂}]/BnOH system ($M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1}$).

Figure S4. ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a PTMC homopolymer synthesized from the [(BDI)Zn{N(SiMe₃)₂}]/BnOH system ($M_{n,SEC} = 5\ 000\ \text{g.mol}^{-1}$).

Figure S5. Details of the methylene and methine region of the ¹H NMR spectrum (CDCl₃, 500 MHz, 23 °C) of a P(LLA-*grad*-TMC) gradient copolymer ($M_{n,SEC} = 13400 \text{ g.mol}^{-1}$) prepared with the [(BDI)Zn{N(SiMe₃)₂}]/BnOH system in toluene at 110 °C (Table 1, entry 2), with assignment of resonances.

Figure S6. Details of the methylene and methine region of the ¹H NMR spectrum (CDCl₃, 500 MHz, 23 °C) of a P(LLA-*grad*-TMC) gradient copolymer ($M_{n,SEC} = 10\ 200\ \text{g.mol}^{-1}$) prepared with the Al(OTf)₃/BnOH system in toluene at 110 °C (Table 1, entry 5), showing resonances (\blacktriangle) characteristic of ether units resulting from partial decarboxylation.

Figure S7. Details of the methine and methylene region of the ¹³C{¹H} NMR spectra (CDCl₃, 125 MHz, 23 °C) of P(LLA-*grad*-TMC) gradient copolymers prepared with the Al(OTf)₃/BnOH system in toluene at 100, 115 and 130 °C, showing evolution of resonances characteristic (\blacktriangle) of ether units resulting from partial decarboxylation.

Figure S8. Details of the methine and methylene region of the ¹³C{¹H} NMR spectra (CDCl₃, 125 MHz, 23 °C) of P(LLA-*grad*-TMC) gradient copolymers prepared with the $M(OTf)_3/BnOH$ systems in toluene at 110 °C, showing resonances characteristic of ether units resulting from partial decarboxylation.

Figure S9. Details of the carbonyl region of the ¹³C{¹H} NMR spectra (CDCl₃, 125 MHz, 23 °C) of (top spectra) true P(TMC-*b*-LLA) block copolymers ($M_{n,SEC} = 23200$ and 2800 g.mol⁻¹) prepared by sequentially loading of TMC (1st) and L-LA (2nd) with the [(BDI)Zn{N(SiMe₃)₂}]/BnOH, (middle spectra) P(LLA-*grad*-TMC) gradient copolymers and (bottom spectrum) a P(LLA-*ran*-TMC) random copolymer prepared by simultaneous loading of L-LA and TMC with various catalyst/BnOH systems in toluene at 110 °C (Table 1, entries 9, 2 and 15).

Figure S10. Details of the ¹H NMR spectra (CDCl₃, 500 MHz, 23 °C) of (top spectra) true P(TMC-*b*-LLA) block copolymers prepared by sequentially loading of TMC (1st) and L-LA (2nd) with the [(BDI)Zn{N(SiMe₃)₂}/BnOH, (middle spectrum) a P(LLA-*grad*-TMC) gradient copolymer and (bottom spectrum) a P(LLA-*ran*-TMC) random copolymer prepared by simultaneous loading of L-LA and TMC with various catalyst/BnOH systems in toluene at 110 °C (Table 1, entries 2 and 15).

Figure S11. ¹³C{¹H} NMR spectrum (CDCl₃, 125 MHz, 23 °C) of a P(LLA-*ran*-TMC) random copolymer prepared by simultaneous loading of L-LA and TMC with the TBD/BnOH system in toluene at 100 °C over 1h45 (Table 1, entry 12).

Figure S12. SEC trace of a copolymer prepared from the $[(BDI)Zn\{N(SiMe_3)_2\}]/BnOH$ system ($M_{n,SEC} = 15\ 000\ \text{g.mol}^{-1}$, $\mathcal{D}_M = 1.5$) (Table 1, entry 3).

Figure S13. SEC trace of a copolymer prepared from the Yb(OTf)₃/BnOH system ($M_{n,SEC} = 13600 \text{ g.mol}^{-1}$, $\mathcal{D}_{M} = 1.3$) (Table 1, entry 9).